Summary

铜绿假单胞菌产生铁载体的定性和定量分析

Published: March 15, 2024
doi:
Please note that all translations are automatically generated. Click here for the English version.

Summary

该方案提供来自 铜绿假单胞菌的总铁载体,pyoverdine和脓霉素的定性和定量分析。

Abstract

铜绿假单胞 菌(铜绿假单胞菌)以其产生多种毒力因子以在宿主中建立感染而闻名。其中一种机制是通过铁载体的产生来清除铁。 铜绿假单 胞菌产生两种不同的铁载体:铁螯合亲和力较低的脓脓苷和铁螯合亲和力较高的脓苷。本报告表明,吡啶可以直接从细菌上清液中定量,而脓皮单在定量前需要从上清液中提取。

定性分析铁载体产生的主要方法是蓝铝磺酸铬 (CAS) 琼脂平板测定。在该测定中,Fe3+-染料复合物中释放的 CAS 染料导致颜色从蓝色变为橙色,表明铁载体的产生。为了定量总铁载体,将细菌上清液与微量滴定板中的CAS染料等比例混合,然后在630nm处进行分光光度分析。通过将Pyoverdine与50 mM Tris-HCl等比例混合,直接从细菌上清液中定量,然后进行分光光度法分析。380 nm处的峰证实了pyoverdine的存在。至于Pyochelin,不可能从细菌上清液中直接定量,因此必须首先提取。随后的分光光度分析显示存在 pyochelin,峰值为 313 nm。

Introduction

生物体需要铁来执行各种重要功能,例如电子传输和 DNA 复制1铜绿假单胞菌是一种革兰氏阴性机会性病原体,已知具有多种毒力因子在宿主中建立感染,其中一种机制是铁载体形成2。在缺铁条件下, 铜绿假单 胞菌会释放出称为铁载体的特殊分子,这些分子会从周围环境中淬灭铁。铁载体在细胞外螯合铁,产生的铁载体复合物被主动转运回细胞3

已知铜绿假单胞菌产生两种铁载体,pyoverdine 和 pyochelin。已知 Pyoverdine 具有较高的铁螯合亲和力 (1:1),而已知 pyochelin 具有较低的铁螯合亲和力 (2:1)4。脓蘑菇素也被称为次级铁载体,因为它具有较低的铁螯合亲和力5铜绿假单胞6 中铁载体的产生和调节受到群体感应 (QS) 系统的主动控制。

除铁淬火外,铁载体还参与调节毒力因子,并在生物膜形成中发挥积极作用7。铁载体还发挥着其他关键作用,包括参与细胞信号传导、防御氧化应激和促进微生物群落之间的相互作用8.铁载体通常根据它们螯合铁的特定官能团进行分类。该分类中的三种主要双酸配体是儿茶酚酸盐、羟肟酸盐和α-羟基羧酸盐3。Pyoverdines 是荧光假单胞菌属物种的标志,例如铜绿假单胞菌和荧光假单胞菌 5。它们由与含有 6-12 个氨基酸的寡肽偶联的混合绿色荧光发色团组成。几种非核糖体肽合成酶 (NRP) 参与其合成9.参与吡啶产生和调控的四个基因是 pvdL、pvdI、pvdJ 和 pvdD10。Pyoverdine 还负责哺乳动物的感染和毒力11.铜绿假单胞菌在中度限铁条件下产生脓蘑菇素,而吡脓草定在严格的限铁环境中产生12。参与 pyochelin 生产的两种操纵子是 pchDCBA 和 pchEFGHI13。值得注意的是,在碧蓝蛋白存在下,脓脓苷(儿茶酚酸酯)诱导氧化损伤和炎症,并产生羟基自由基,其对宿主组织有害11

与微生物测定相比,蓝铝磺酸铬 (CAS) 测定因其全面、高灵敏度和更大的便利性而被广泛采用,微生物测定虽然灵敏,但可能过于特异性14.CAS测定可以在琼脂表面或溶液中进行。它依赖于当三价铁离子从其强烈的蓝色络合物转变为橙色时发生的颜色变化。CAS 比色法定量了 Fe-CAS 表面活性剂三元络合物中铁的消耗。这种特殊的络合物由金属、有机染料和表面活性剂组成,呈蓝色,并在 630 nm 处表现出吸收峰。

本报告提出了一种定性检测铁载体产生的方法,其中可以检测琼脂平板上铁载体的产生。还提供了一种定量估计微量滴定板中总铁载体产生的方法,以及来自 铜绿假单胞菌的两种铁载体pyoverdine和脓脓明的检测和定量分析方法。

Protocol

铜绿假单胞菌的所有细菌分离株均来自印度巴罗达和斋浦尔的医学微生物学实验室。所有选定的临床分离株均在生物安全柜(BSL2)中处理,并且在实验期间处理细菌分离株时要格外小心。所有试剂/溶液的商业细节均在材料表中提供。 1. 天蓝色铬磺酸铬(CAS)染料和琼脂培养基的制备 用以下组合物制备CAS染料(100mL):将 60 mg CAS 溶解在 50 mL 蒸馏水(溶液 1)中。 将 2.7 mg FeCl3·6H2O 溶于 10 mL 10 mM HCl(溶液 2)中。 将 73 mg 西曲溴铵 (HDTMA) 溶解在 40 mL 蒸馏水(溶液 3)中。 小心混合溶液 1、溶液 2 和溶液 3。将其存放在玻璃瓶中。 按照以下步骤准备CAS琼脂:将 100 mL MM9 盐溶液加入 750 mL 蒸馏水中。 溶解32.24g哌嗪-N,N’-双(2-乙磺酸)(PIPES)游离酸。 加入 15 克琼脂。高压灭菌器并使其冷却。 向混合物中加入 30 mL 无菌酪氨基酸溶液和 10 mL 无菌 20% 葡萄糖溶液。 加入 100 mL CAS 染料,混合,并在无菌条件下倒入。注: 补充文件 1 中提供了 MM9 培养基、酪蛋白氨基酸溶液和 8-羟基喹啉的制备。PIPES缓冲液对pH值敏感。在达到 pH 值 5.6 之前,它不会溶解。确保持续监测 pH 值,因为当 PIPES 开始溶解在水中时,它会进一步降低 pH 值。用相同体积的3%8-羟基喹啉溶解在氯仿中提取Casamino酸。将不混溶液在4°C下放置约20分钟,小心地收集溶液的上相,不要干扰下相。 2. 铁载体生产的定性分析 将OD600nm 设置为0.2,用于 铜绿假单胞菌的24小时培养物。 使用无菌线环,在CAS琼脂平板上划线细菌培养物。 在30°C孵育24小时。注意:蛋白胨水培养基或 0.8% 生理盐水可用于稀释细菌培养物。如果在24小时未观察到细菌生长,则将CAS板孵育48至72小时。 3. 总铁载体的定量估计 将OD600nm调节至0.25后,在蛋白胨水培养基中重新接种24小时生长的铜绿假单胞菌培养物,并在30°C下孵育48小时。 48小时后,在室温下以4650× g 离心细菌培养物10分钟。 离心后,向 96 孔微量滴定板中加入 100 μL 无细胞上清液,并向其中加入 100 μL CAS 染料。 用铝箔盖住板,在室温下孵育20分钟。 孵育后,在630nm处进行分光光度读数。 将总铁载体定量的结果计算为铁载体单位百分比(PSU)。注意: PSU 的计算公式为:[(Ar – As)/Ar] x 100其中,Ar = 参比在 630 nm 处的吸光度,As = 样品游离上清液的吸光度。作为参考,应将CAS染料添加到未接种的蛋白胨水培养基中。用6M HCl填充所有玻璃器皿,如试管,烧瓶等2小时,并用蒸馏水冲洗两次,以去除其上的任何铁痕迹。 4. 吡啶的定量估计 将OD600nm调节至0.25并在30°C孵育48小时后,在蛋白胨水培养基中重新接种24小时生长的铜绿假单胞菌培养物。 48小时后,在进一步进行之前测量细菌生长的OD600nm 。 在室温下以4650× g 离心细菌培养物10分钟。 离心后,向 96 孔微量滴定板中加入 100 μL 无细胞上清液,并向其中加入 100 μL 50 mM Tris-HCl (pH 8.0)。 在OD405 nm处进行分光光度读数。 5. 脓气素提取和分光光度法 将OD600nm调整为0.25并在30°C孵育24小时后,在King’s B培养基(补充文件1)中重新接种24小时生长的铜绿假单胞菌培养物。 24小时后,取100mL培养物,并在室温下以4650× g 离心10分钟。 离心后,向上清液中加入 5 mL 1 M 柠檬酸。用 50 mL 乙酸乙酯提取两次。 通过注射器过滤器用硫酸镁过滤有机相。将过滤后的有机相储存在-20°C。 在 320 nm 处获取分光光度读数。注意:由于 pyochelin 在室温下是一种高度不稳定的化合物,因此请在冰上进行提取过程。使用 50 mL 无菌注射器进行过滤器分离。将棉花放在注射器的尖端,并在上面加入 1 克硫酸镁。将无菌注射器过滤器固定在注射器的尖端,并将滤液收集在无菌管中。

Representative Results

在对临床分离株的铁载体进行定量定量之前,对铁载体的产生进行了定性筛选,以确保铁载体的产生。通过在CAS琼脂平板上划线细菌来观察来自临床分离株的铁载体的定性检测。本研究选择了三种临床分离株,即MR1、TL7、J3以及PAO1(参考菌株)。所有三种临床分离株和 PAO1 都显示出铁载体产生的阳性结果,其中蓝色琼脂表面细菌生长周围的透明橙色光晕表明铁载体产生阳?…

Discussion

该方案使研究人员能够从细菌游离上清液中定量铜绿假单胞菌的总铁载体和两种不同的铁载体,即pyoverdine和pyochelin。在CAS琼脂平板测定中,CAS染料和Fe3+离子形成络合物。当细菌产生铁载体时,它们会淬灭 CAS-Fe3+ 复合物中的 Fe3+ 离子,导致细菌生长周围的颜色发生变化。这种变化导致细菌生长周围出现明显的橙色光晕14,15

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢 DBT(生物技术教学计划)、DBT(BUILDER 计划)和 FIST 的资助。MR 感谢 SHODH 的奖学金。惠普感谢CSIR的奖学金。

Materials

Agar Agar, Type IHIMEDIAGRM666
8-HydroxyquinolineLoba Chemie4151
Casamino AcidSRL Chemicals68806
Cetyltrimethyl Ammonium Bromide (CTAB)HIMEDIARM4867-100G
ChloroformMerck1070242521
Chrome azurol sulfonateHIMEDIARM336-10G
Citric acidMerck100241
Dextrose monohydrateMerck108342
DichloromethaneMerck107020
Ferric chloride hexahydrateHIMEDIAGRM6353
Glass FlasksBorosil5100021
Glass Test-tubesBorosil9820U05
Hydrochloric acidSDFCL20125
King's medium B baseHIMEDIAM1544-500G
M9 Minimal Medium SaltsHIMEDIAG013-500G
Magnesium Sulphate Qualigens10034
MultiskanGO UV SpectrophotometerThermo Scientific51119200
Peptone Type I, BacteriologicalHIMEDIARM667-500G
PIPES free acidMP Biomedicals190257
Potassium dihydrogen phosphateMerck1048731000
Proteose peptoneHIMEDIARM005-500G
Shimadzu UV-Vis SpectrophotometerShimadzu2072310058
Sigma LaborzentrifugeSigma-Aldrich3-18K
Sodium chlorideQualigens15915

References

  1. Wang, J., Pontopolous, K. Regulation of iron cellulatar metabolism. Biochemical Journal. 434 (3), 365-381 (2011).
  2. Schalk, I., Perraud, Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environmental Microbiology. 25 (4), 811-831 (2022).
  3. Ghssein, G., Ezzeddine, Z. A review of Pseudomonas aeruginosa metallophores: Pyoverdine, pyochelin and pseudopaline. Biology. 11 (12), 1711 (2022).
  4. Sanchez-Jimenez, A., Marcos-Torres, F. J., Llamas, M. A. Mechanisms of iron homeostasis in pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process. Microbial Biotechnology. 16 (7), 1475-1491 (2023).
  5. Cornelis, P., Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Frontiers in Cellular and Infection Microbiology. 4 (11), (2013).
  6. Lin, J., Cheng, J., Shen, X. The pseudomonas quinolone signal (pqs): Not just for quorum sensing anymore. Frontiers in Cellular and Infection Microbiology. 8 (7), 1-9 (2018).
  7. Sass, G., et al. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by pseudomonas aeruginosa. PLoS ONE. 14 (5), 1-19 (2019).
  8. Dao, K. -. H. T., Hamer, K. E., Clark, C. L., Harshman, L. G. Pyoverdine production by pseudomonas aeruginosa exposed to metals or an oxidative stress agent. Ecological Applications. 9 (2), 441-448 (1999).
  9. Visca, P., Imperi, F., Lamont, I. L. Pyoverdine siderophores: From biogenesis to biosignificance. Trends in Microbiology. 15 (1), 22-30 (2007).
  10. Ackerley, D. F., Caradoc-Davies, T. T., Lamont, I. L. Substrate specificity of the nonribosomal peptide synthetase pvdd from pseudomonas aeruginosa. Journal of Bacteriology. 185 (9), 2848-2855 (2003).
  11. Geum-Jae-Jeong, , et al. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Applied Microbiology and Biotechnology. 107 (4), 1019-1038 (2023).
  12. Dumas, Z., Ross-Gillespie, A., Kummerli, R. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Biological Sciences. 280 (1764), 20131055 (2013).
  13. Gaille, C., Reimmann, C., Haas, D. Isochorismate synthase (pcha), the first and rate-limiting enzyme in salicylate biosynthesis of pseudomonas aeruginosa. Journal of Biological Chemistry. 278 (19), 16893-16898 (2003).
  14. Schwyn, B., Neilands, J. B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 160 (1), 47-56 (1987).
  15. Louden, B. C., Haarmann, D., Lynne, A. M. Use of blue agar cas assay for siderophore detection. Journal of Microbiology & Biology Education. 12 (1), 51-53 (2011).
  16. Arora, N. K., Verma, M. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech. 7 (381), 1-9 (2017).
  17. Frac, M., Gryta, A., Oszust, K., Kotowicz, N. Fast and accurate microplate method (biolog mt2) for detection of fusarium fungicides resistance/sensitivity. Frontiers in Microbiology. 7 (4), 1-16 (2016).
  18. Cezard, C., Farvacques, N., Sonnet, P. Chemistry and biology of pyoverdines, pseudomonas primary siderophores. Current Medicinal Chemistry. 22 (2), 165-186 (2015).
  19. Braud, A., Hoegy, F., Jezequel, K., Lebeau, T., Schalk, I. J. New insights into the metal specificity of the pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environmental Microbiology. 11 (5), 1079-1091 (2009).
  20. Brandel, J., et al. a siderophore of pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper (ii) and zinc (ii) complexes. Dalton Transactions. 41 (9), 2820-2834 (2012).
  21. Hoegy, F., Mislin, G. L. A., Schalk, I. J. Pseudomonas methods and protocols. Methods in Molecular Biology. 1149, (2014).
  22. Cunrath, O., et al. The pathogen pseudomonas aeruginosa optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics. 12 (12), 2108-2120 (2020).
  23. Ji, A. J., et al. A novel and sensitive LC/MS/MS method for quantification of pyochelin in human sputum samples from cystic fibrosis patients. Biomarkers & Applications. 4 (1), 135 (2019).
  24. Visaggio, D., et al. A highly sensitive luminescent biosensor for the microvolumetric detection of the pseudomonas aeruginosa siderophore pyochelin. ACS Sensors. 6 (9), 3273-3283 (2021).
  25. Miethke, M., Marahiel, M. A. Siderophore-bases iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews. 71 (3), 443-451 (2007).
  26. Il, J. M. R., Lin, Y. -. M., Lu, Y., Miller, M. J. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Current Medicinal Chemistry. 7 (2), 159-197 (2000).
Qualitative and Quantitative Analysis of Siderophore Production from Pseudomonas aeruginosa

Play Video

Cite This Article
Rathod, M., Patel, H., Gajjar, D. Qualitative and Quantitative Analysis of Siderophore Production from Pseudomonas aeruginosa. J. Vis. Exp. (205), e65980, doi:10.3791/65980 (2024).

View Video