Summary

Humane Lung dendritiske celler: Rumlig Distribution og Fænotypisk Identifikation i endobronchial Biopsier Brug Immunhistokemi og flowcytometri

Published: January 20, 2017
doi:

Summary

Lung-resident immune cells, including dendritic cells (DCs) in humans, are critical for defense against inhaled pathogens and allergens. However, due to the scarcity of human lung tissue, studies are limited. This work presents protocols to process human mucosal endobronchial biopsies for studying lung DCs using immunohistochemistry and flow cytometry.

Abstract

The lungs are constantly exposed to the external environment, which in addition to harmless particles, also contains pathogens, allergens, and toxins. In order to maintain tolerance or to induce an immune response, the immune system must appropriately handle inhaled antigens. Lung dendritic cells (DCs) are essential in maintaining a delicate balance to initiate immunity when required without causing collateral damage to the lungs due to an exaggerated inflammatory response. While there is a detailed understanding of the phenotype and function of immune cells such as DCs in human blood, the knowledge of these cells in less accessible tissues, such as the lungs, is much more limited, since studies of human lung tissue samples, especially from healthy individuals, are scarce. This work presents a strategy to generate detailed spatial and phenotypic characterization of lung tissue resident DCs in healthy humans that undergo a bronchoscopy for the sampling of endobronchial biopsies. Several small biopsies can be collected from each individual and can be subsequently embedded for ultrafine sectioning or enzymatically digested for advanced flow cytometric analysis. The outlined protocols have been optimized to yield maximum information from small tissue samples that, under steady-state conditions, contain only a low frequency of DCs. While the present work focuses on DCs, the methods described can directly be expanded to include other (immune) cells of interest found in mucosal lung tissue. Furthermore, the protocols are also directly applicable to samples obtained from patients suffering from pulmonary diseases where bronchoscopy is part of establishing the diagnosis, such as chronic obstructive pulmonary disease (COPD), sarcoidosis, or lung cancer.

Introduction

Lungerne er i løbende kontakt med det ydre miljø og er meget udsat for både harmløse partikler og mikrober med kapacitet til at forårsage sygdom. Derfor er det kritisk for immunsystemet at montere potente immunresponser mod invaderende patogener, men det er lige så vigtigt at opretholde tolerance over for inhalerede antigener, som ikke forårsager sygdom. At tilvejebringe potent immun-overvågning, er åndedrætssystemet foret med et netværk af immunceller, herunder dendritiske celler (DC'er). DC'er er professionelle antigenpræsenterende celler med den unikke evne til at aktivere naive T-celler. I humane lunger, hjemmehørende DC'er støder et antigen og derefter proces og transportere det til lungen-drænende lymfeknuder til præsentation for og aktivering af T-celler 1, 2, 3.

I det humane immunsystem, kan DC'er opdeles i flere delmængder, med Distinct men overlappende funktioner: CD1c + og CD141 + myeloide DCs (MDC'er) og CD123 + plasmacytoide DCs (pdCs) 4, 5. Mens mest detaljerede viden om menneskets DC'er stammer fra undersøgelser i blodet, er det nu klart, at de menneskelige lunger også harbor sjældne populationer af DC delmængder med T-celle stimulerende kapacitet 6, 7, 8, 9. Imidlertid akkumulerende data viser, at immunceller, herunder DC'er, er forskellige i deres frekvens, fænotype og funktion afhængig af deres anatomiske placering 10. Således er det vigtigt at studere immunceller fra det relevante væv for at forstå deres bidrag til lokal immunitet og tolerance. Tilsammen har dette understreger behovet for at undersøge lunge-resident DCs når man behandler lungesygdomme, trods blod DC'er er mere let tilgængelige og tilgængelig hos mennesker.

De første studier, der undersøgte lunge-hjemmehørende DC'er i mennesker anvendte primært morfologi og ekspressionen af enkelte markører, såsom HLA-DR og CD11 c, i vævssnit ved hjælp af immunhistokemi 11, 12, 13. I modsætning hertil nyere undersøgelser har typisk påberåbt flowcytometrisk analyse til at studere forskellige immuncelleundergrupper. Men da det er vanskeligt at finde en enkelt celle-overflademarkør, der entydigt identificerer en specifik DC delmængde, den potentielle begrænsning på studier med kun fire farver flowcytometri er risikoen for herunder cellepopulationer med lignende fænotypiske markører som DC'er. For eksempel er CD11 udtrykt på alle myeloide DC'er og langt de fleste af monocytter. På den anden side, i studier anvende mere avancerede flowcytometri paneler blev ikke-kræft lungevæv fra kirurgiske resektioner af patienter typisk anvendesxref "> 10, 14, 15, 16, selv om det er uklart, om disse sjældne populationer er virkelig repræsentative for udviklingslandene til stede i raske forsøgspersoner. Samlet set er undersøgelser stort set begrænset på grund af det faktum, at kirurgisk fjernet eller hele den menneskelige lungevæv er knappe.

For at overvinde nogle af disse begrænsninger, dette værk beskriver, hvordan du udfører en detaljeret analyse af rumlige fordeling og en fænotypisk identifikation af DC'er i slimhinder endobronchiale biopsier opnået fra raske frivillige, der gennemgår en bronkoskopi. Flere små biopsier kan indsamles fra den enkelte og kan efterfølgende indlejres for sektionering og analyse ved hjælp af immunhistokemi eller enzymatisk fordøjet til avanceret flowcytometrisk analyse. Brug af lungevæv i form af endobronkiale biopsier opnået fra bronchoscopies giver den fordel, som gør det muligt at udføre study på raske frivillige, i modsætning åben kirurgi af lungerne, som af indlysende grunde er begrænset til patienter, der kræver thoraxkirurgi. Endvidere det væv, der er udtaget under en bronkoskopi fra raske frivillige er fysiologisk normal, i modsætning til en ikke-ramte område af lungevævet hos patienter med lungesygdom. På den anden side, biopsierne er små, og antallet af celler hentet frem, selv når pooling flere biopsier, begrænser den type analyser, der kan udføres.

Mens det foreliggende arbejde fokuserer på DC'er, at de beskrevne direkte kan udvides fremgangsmåder indbefatter andre (immun) celler af interesse, der findes i humant mucosalt lungevæv. Endvidere protokollerne er også direkte anvendelse på prøver opnået fra patienter, der lider af lungesygdomme, hvor bronkoskopi er med til at etablere diagnosen, såsom kronisk obstruktiv lungesygdom (KOL), sarcoidose, eller lungecancer.

Protocol

BEMÆRK: Denne forskning blev godkendt af den regionale Etiske Review Board i Umeå, Sverige. 1. bronkoskopi for Sampling endobronchiale Biopsier fra personmotiver Indhente informeret samtykke fra alle deltagere. Behandl forsøgspersoner med oral midazolam (4-8 mg) og intravenøs glycopyrronium (0,2-04 mg) 30 min før bronkoskopi. Påfør aktuel anæstesi med lidocain i svælg og bronkier. Lad emnet gurgle med ~ 3 ml lidocain 4% og anvendelse 3 ml til tungen base og ind …

Representative Results

Studies characterizing human respiratory tissue-resident immune cells, including DCs, are limited, largely due to the fact that surgically removed or whole human lung tissue is scarce. Here, a less invasive method of obtaining lung tissue from endobronchial biopsies (EBB) of healthy volunteers and developed protocols to study the immune cells in the tissue using immunohistochemistry or flow cytometry are outlined. Healthy volunt…

Discussion

This paper describes how to generate a detailed spatial and phenotypical characterization of lung tissue-resident DCs in healthy humans using immunohistochemistry and flow cytometry on endobronchial mucosal biopsies collected during bronchoscopy. In the following paragraphs critical steps in the protocol are discussed in detail.

Critical Steps with the Protocol

Sectioning and immunohistochemistry: It is critical to keep the biopsy blocks at -20 °C when not using t…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank the volunteers who have contributed clinical material to this study. We are also thankful to the staff at the Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, University Hospital, Umeå (Norrlands universitetssjukhus) for the collection of all clinical material.

This work was supported by grants to AS-S from the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, and the Karolinska Institutet.

Materials

Bronchoscopy
Bronchoscope BF1T160 Olympus BF1T160
Light source  Olympus Exera CV-160
Fenestrated forceps Olympus FB21C Used to take biopsies
Bite Block Conmed 1429 20x27mm
Glucose 25%  500mL intravenous
Glycopyrronium bromide 0.2mg/mL Intravenous. Prevents mucus/saliva secretion
Mixt. Midazolam 1mg/mL p.o Can be used for extra relaxation
Lidocaine, 40mg/mL Mouth and throat administration / Gargled
Lidocaine 100mg/ml spray Administered to back of throat
Lidocaine 20mg/ml spray Administered via bronchoscope to airways
Name of Reagent/ Equipment Company Catalog Number Comments/Description
GMA processing and embedding
Glass vials 5mL
Acetone Sigma-Aldrich 32201-1L
Molecular sieves, 4A Alfa Aesar 88120 3-4mm diameter pellets
Phenylmethylsulfonyl fluoride Sigma-Aldrich P-7626 0.035g/100ml acetone
Iodoacetamide Sigma-Aldrich I-6125 0.37g/100ml acetone
Polythene-flat  TAAB embedding capsules TAAB laboratories C094 x500 8mm diameter, polythene, flat-bottom capsules
Capsule holder TAAB laboratories C054 Holds 25 8mm capsules
JB-4 GMA embedding kit Polysciences 00226 Contains JB-4 Solution A (0026A-800), JB-4 solution B (0026B-3.8), benzoyl peroxide (02618-12)
Methyl benzoate Sigma-Aldrich 27614-1L
Silica gel with humidity indicator Scharlau GE0043 2.5-6mm 
Name of Reagent/ Equipment Company Catalog Number Comments/Description
GMA sectioning
Glass microscope slides ThermoFisher Scientific 10143562CEF Cut edges, frosted end
Poly-L-Lysine solution Sigma-Aldrich P8920-500mL 1:10 for working solution
Sheet glass strips for ultramicrotomy Alkar
Tween 20 Sigma-Aldrich P2287 Wash solution (0.1% Tween20)
LKB 7800B Knifemaker LKB
Capsule splitter TAAB laboratories C065
Carbon steel single edge blades TAAB laboratories B054
Vice
Ammonia, 25% VWR 1133.1000 2mL in 1L, 1:500 (0.05%)
Microtome Leica Leica RM 2165
Light source Leica Leica CLS 150 XE
Microscope with swing arm stand Leica Leica MZ6
Name of Reagent/ Equipment Company Catalog Number Comments/Description
GMA Immunohistochemistry
Diamond tipped pen Histolab 5218
Hydrogen peroxide 30% solution AnalaR Normapur 23619.264
Sodium azide Sigma-Aldrich S8032
Tris Roche 10708976001
Sodium chloride VWR chemicals 27810.295
Bovine serum albumin Millipore 82-045-2 Probumin BSA diagnostic grade
Dulbecco's modified eagle medium (DMEM) Sigma-Aldrich D5546
Anti-human CD45 antibody BioLegend 304002 Mouse monoclonal, clone HI30, isotype IgG1k. Working concentration of 500 ng/ml
Anti-human CD1a antibody AbD Serotech MCA80GA Mouse monoclonal, clone NA1/34-HLK, isotype IgG2a. Working concentration of 10 µg/ml
Mouse monoclonal IgG1 isotype control Abcam ab27479
Mouse monoclonal IgG2a isotype control Dako X094301-2
Vectastain ABC Elite standard kit Vector Labs PK-6100
AEC (3-amino-9-ethylcarbazole) peroxidase substrate kite Vector Labs SK-4200
Mayers haematoxylin HistoLab 01820
Permanent Aqueous Mounting Medium AbD Serotech BUF058C
Drying oven
DPX permanent mounting solution  VWR 360292F
Light microscope Leica Leica DMLB
Microscope camera Leica Leica DFC 320
Analysis software Leica Leica Qwin V3
Name of Reagent/ Equipment Company Catalog Number Comments/Description
Enzymatic digestion
Hank's Balanced Salt Solution (HBSS) Sigma-Aldrich 55021C
Dithiothreitol (DTT) Sigma-Aldrich DTT-RO
Collagenase II Sigma-Aldrich C6885
DNase Sigma-Aldrich 10104159001 ROCHE
RPMI 1640 Sigma-Aldrich R8758
Forceps
Platform rocker Grant instruments PMR-30
50 mL conical tubes Falcon 14-432-22
40 µm cell strainer Falcon 352340
Name of Reagent/ Equipment Company Catalog Number Comments/Description
Flow cytometry
Phosphate Buffered Saline (PBS)
LIVE/DEAD Aqua fixable dead cell stain kit Life Technologies L34957
CD45 BD 555485
CD3 BD 557757
CD20 BD 335829
CD56 Biolegend 318332
CD66abce Miltenyi 130-101-132
HLA-DR BD 555813
CD14 BD 557831
CD16 Biolegend 302026
CD11c BD 560369
CD1c Miltenyi 130-098-009
CD141 Miltenyi 130-090-514
CD103 Biolegend 350212
Paraformaldehyde Sigma-Aldrich F8775
LSR II Flow cytometer BD Flow cytometer
FlowJo FlowJo Software for analysis

References

  1. Kopf, M., Schneider, C., Nobs, S. P. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 16 (1), 36-44 (2015).
  2. Condon, T. V., Sawyer, R. T., Fenton, M. J., Riches, D. W. Lung dendritic cells at the innate-adaptive immune interface. J Leukoc Biol. 90 (5), 883-895 (2011).
  3. Lambrecht, B. N., Hammad, H. Biology of lung dendritic cells at the origin of asthma. Immunity. 31 (3), 412-424 (2009).
  4. Schlitzer, A., McGovern, N., Ginhoux, F. Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Semin Cell Dev Biol. 41, 9-22 (2015).
  5. Ziegler-Heitbrock, L., et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 116 (16), e74-e80 (2010).
  6. Demedts, I. K., Brusselle, G. G., Vermaelen, K. Y., Pauwels, R. A. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol. 32 (3), 177-184 (2005).
  7. Donnenberg, V. S., Donnenberg, A. D. Identification rare-event detection and analysis of dendritic cell subsets in broncho-alveolar lavage fluid and peripheral blood by flow cytometry. Front Biosci. 8, s1175-s1180 (2003).
  8. Masten, B. J., et al. Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol. 177 (11), 7784-7793 (2006).
  9. Ten Berge, B., et al. A novel method for isolating dendritic cells from human bronchoalveolar lavage fluid. J Immunol Methods. 351 (1-2), 13-23 (2009).
  10. Yu, C. I., et al. Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-beta. Immunity. 38 (4), 818-830 (2013).
  11. Nicod, L. P., Lipscomb, M. F., Toews, G. B., Weissler, J. C. Separation of potent and poorly functional human lung accessory cells based on autofluorescence. J Leukoc Biol. 45 (5), 458-465 (1989).
  12. Sertl, K., et al. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med. 163 (2), 436-451 (1986).
  13. van Haarst, J. M., de Wit, H. J., Drexhage, H. A., Hoogsteden, H. C. Distribution and immunophenotype of mononuclear phagocytes and dendritic cells in the human lung. Am J Respir Cell Mol Biol. 10 (5), 487-492 (1994).
  14. Schlitzer, A., et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 38 (5), 970-983 (2013).
  15. Yu, Y. A., et al. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. Am J Respir Cell Mol Biol. , (2015).
  16. Haniffa, M., et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 37 (1), 60-73 (2012).
  17. Britten, K. M., Howarth, P. H., Roche, W. R. Immunohistochemistry on resin sections: a comparison of resin embedding techniques for small mucosal biopsies. Biotech Histochem. 68 (5), 271-280 (1993).
  18. Perfetto, S. P., Chattopadhyay, P. K., Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 4 (8), 648-655 (2004).
  19. Baharom, F., et al. Dendritic Cells and Monocytes with Distinct Inflammatory Responses Reside in Lung Mucosa of Healthy Humans. J Immunol. 196 (11), 4498-4509 (2016).
  20. Salvi, S., et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 159 (3), 702-709 (1999).
  21. Schon-Hegrad, M. A., Oliver, J., McMenamin, P. G., Holt, P. G. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med. 173 (6), 1345-1356 (1991).
  22. Saeys, Y., Gassen, S. V., Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol. 16 (7), 449-462 (2016).

Play Video

Citer Cet Article
Baharom, F., Rankin, G., Scholz, S., Pourazar, J., Ahlm, C., Blomberg, A., Smed-Sörensen, A. Human Lung Dendritic Cells: Spatial Distribution and Phenotypic Identification in Endobronchial Biopsies Using Immunohistochemistry and Flow Cytometry. J. Vis. Exp. (119), e55222, doi:10.3791/55222 (2017).

View Video