We describe a method to construct devices for 3D culture and experimentation with cells and multicellular organoids. This device allows analysis of cellular responses to soluble signals in 3D microenvironments with defined chemoattractant gradients. Organoids are better than single cells at detection of weak noisy inputs.
Various limitations of 2D cell culture systems have sparked interest in 3D cell culture and analysis platforms, which would better mimic the spatial and chemical complexity of living tissues and mimic in vivo tissue functions. Recent advances in microfabrication technologies have facilitated the development of 3D in vitro environments in which cells can be integrated into a well-defined extracellular matrix (ECM) and a defined set of soluble or matrix associated biomolecules. However, technological barriers have limited their widespread use in research laboratories. Here, we describe a method to construct simple devices for 3D culture and experimentation with cells and multicellular organoids in 3D microenvironments with a defined chemoattractant gradient. We illustrate the use of this platform for analysis of the response of epithelial cells and organoids to gradients of growth factors, such as epidermal growth factor (EGF). EGF gradients were stable in the devices for several days leading to directed branch formation in breast organoids. This analysis allowed us to conclude that collective gradient sensing by groups of cells is more sensitive vs. single cells. We also describe the fabrication method, which does not require photolithography facilities nor advanced soft lithography techniques. This method will be helpful to study 3D cellular behaviors in the context of the analysis of development and pathological states, including cancer.
In physiological environment, cells are embedded in an extracellular matrix (ECM) and exposed to a plethora of biomolecules. Interactions between cells and the surrounding microenvironment regulate intracellular processes controlling diverse phenotypes, including migration, growth, differentiation and survival1,2. Much has been learned about cellular behaviors in a conventional 2D cell culture. However, with the advent of intravital imaging and experimentation with cells embedded in 3D hydrogels, important differences in cell behaviors have been recognized in the simplified 2D in vitro cultures vs. 3D tissue-like environments. While cells interact with ECM fibers and sense their mechanical properties within the 3D matrix, the material stiffness of the gel is not a fully independent variable in a 2D in vitro system. The dimensionality alters focal adhesion formation, resulting in different cell morphology and behavior. Furthermore, cells on a 2D surface are exposed to fewer signaling cues than cells open to all directions in 3D.
These limitations have increased the interests for 3D systems that represent the spatial and chemical complexity of living tissues and better predict in vivo tissue functions. They have been developed in many forms from organoids as self-assembling cellular microstructures to cells randomly interspersed in ECM3,4. Recent advances in microfabrication technologies have facilitated the advent of various types of 3D culture systems5,6,7,8,9 for studying phenotypic changes and cellular responses to soluble signals; however, technological barriers limit the widespread use in research laboratories. In many cases, the fabrication processes require photolithography techniques and background knowledges for soft lithography. Moreover, various factors must be controlled to successfully build a device and to achieve an optimal function of the device over a long period of time.
Our method describes how to construct a 3D PDMS device for incorporating cells and multicellular organoids into a 3D microenvironment with defined chemoattractant gradients and then analyze epithelial responses to EGF10. Our data reveal that the capacity of organoids to respond to shallow EGF gradients arises from intercellular chemical coupling through gap junctions. It suggests the potential of organoids for more precise detection of weak and noisy spatially graded inputs. The fabrication process does not require a cleanroom facility nor photolithography techniques. However, the 3D PDMS device includes necessary factors of 3D physiological environment. This method will be helpful to study 3D cellular behaviors and it has great research potential with different cell types, chemoattractants, and ECM combinations.
All animal work was conducted in accordance with protocols reviewed and approved by the Institutional Animal Care and Use Committee, Johns Hopkins University, School of Medicine.
1. Fabrication of the mesofluidic device
2. Cell preparation: primary mammary organoid isolation
NOTE: The details of mammary organoid isolation can be found in a previous work11. Any kind of single cell or organoid can be prepared according to their own isolation/detachment protocols.
3. Collagen preparation and injection
NOTE: Other types of ECM gels can be prepared according to their own gelation protocols.
4. 3D imaging and quantification
EGF is an essential regulator of branching morphogenesis in mammary glands and a critical chemoattractant guiding the migration of breast epithelial cells in invasive cancer growth. We used the mesoscopic fluidic devices described above to study the response of cells to defined EGF gradients (Figure 1A,B)10. The device yields a culture area 5 mm wide, 10 mm long, and 1 mm tall. The sides of the culture area are separated from open wells by hexagonal pillars, which are used to trap the liquid ECM and cell mixture within the cell culture area through surface tension. We note that, given the size of this 3D culture, it would be very difficult, expensive, and time consuming to construct an appropriately sized mold by photolithography10. By using a novel application of a standard technique, stereolithography, we quickly and inexpensively produced the mold. Moreover, by modifying the design, an exponential gradient (Figure 1C, i) or multiple linear gradients in a chip (Figure 1C, ii) can be induced as well as a stable gradient with continuous flow (Figure 1C, iii).
Both in silico (Figure 2A,B,C) and in vitro (Figure 2D,E,F) tests demonstrated the formation of a stable linear EGF gradient across the cell culture area which lasted for approximately two days without replenishing the ‘source’ and ‘sink’ reservoirs. The time-dependent diffusion of the proteins was simulated using a commercialized multiphysics software. The 3D geometry of the chamber configuration was recreated on the software and the average concentration within the chamber volume was determined and plotted. These results suggested that EGF, a 6.4 kDa protein, can form a stable diffusion-based gradient within the collagen gel prepared as described above over a relatively short period of time. We also determined that similar profiles of proteins of 1, 10, and 150 kDa could be formed using this method.
Mammary organoids formed multiple branches in the presence of spatially uniform 2.5 nM EGF and the branch formation displayed no directional bias over 3 days (Figure 3A,D). However, if EGF was added in the form of a linear gradient of 0.5 nM/mm, branch formation displayed a significant directional bias (Figure 3B,E). However, we detected no such bias for single cells in the same gradient. In order to determine if multicellular communication was necessary for the gradient response, we explored if blocking intercellular gap junctions with various inhibitors would prevent the biased branch formation. The gap junction inhibitors indeed suppressed the ability of the organoids to respond to the gradient (Figure 3C,F). As explored more extensively in the original study describing this method10, this result supports the hypothesis that the communication through gap junctions is necessary for the EGF gradient response in mammary organoids10.
Figure 1. Mesofluidic device with defined EGF gradient. (A) 3D view of PDMS chip: (i) top view and (ii) front view of a mold (unit: mm) (iii) an array of molds (red) filled with PDMS (transparent) (iv) PDMS chambers pilled off from the mold (v) a schematic diagram of an assembled device (vi) a real picture of the device filled with collagen gel and culture medium. (B) A schematic diagram of the mesofluidic chamber with organoids embedded in a collagen gel and reservoirs of high (red) and low (red) EGF concentration resulting in EGF gradients (This figure has been modified from10). (C) Potential designs for inducing an exponential gradient (i), four different linear gradients in a chip (ii), and a stable gradient with continuous flow (iii). Red regions indicate sources or sinks filled with culture medium and grey regions indicate chambers filled with gel/cells mixture. Please click here to view a larger version of this figure.
Figure 2. Evaluation of ligand gradients across the chip. (A) Simulation of ligand concentration across the chip showing gradient profiles. Simulated gradient profiles of (B) 1 kDa protein and (C) 70 kDa protein. (D) Image of the device with a linear gradient of 10 kDa Dextran Blue used to visualize the diffusion of EGF. Hexagonal dotted lines indicate pillars at the side of gel area. Experimental gradient profiles of 1, 10 and 150 kDa dextran across the chip (This figure has been modified from Ellison et al. 201610) (E) after 8 hours and (F) after 48 hours. Please click here to view a larger version of this figure.
Figure 3. Cellular response to EGF gradient. (A) Non-directional branching of organoids in collagen with a uniform 2.5 nM EGF. (B) Directional branching of organoids in collagen with a linear gradient of 0.5 nM/mm of EGF. (C) Non-directional branching of organoids in a linear gradient of 0.5 nM/mm of EGF with a gap junction blocker. (D-F) Angular histograms of organoid branching directions corresponding to (A)-(C), respectively. Please click here to view a larger version of this figure.
The fabrication of PDMS molds was performed using a commercial 3D printing service, but can also be accomplished by a high end 3D printer in-house. Among various 3D fabrication methods, stereolithography is recommended for high resolution mold generation. Because PDMS curing occurs at a high temperature (80 °C), the materials should be sufficiently thermally resistant, which should be explicitly specified, if printing is outsourced. A thermal post-cure can be discussed with the printing service company to increase the thermal resistance of the part. The details of the printing service and materials are specified in the Table of Materials.
The mechanical property of cured PDMS depends on the curing temperature. If the PDMS mixture is kept at room temperature for a long time before curing in an oven, it becomes too elastic even after the complete curing. Thus, the degassing process at room temperature should be done within 1 hour or less. Degassing refers to a cyclic application of vacuum that can help remove any micro-bubbles within PDMS.
The pH of the collagen solution is critical not only for gelation but also for cell viability. If collagen is not neutralized before mixing with cells, the cell viability will be low. The amount of 1 N NaOH solution for neutralizing the collagen mixture depends on the pH of the original collagen solution and it can be calculated theoretically. However, it is recommended to add the NaOH solution to the collagen solution gradually, checking the pH readings of the medium using phenol red indicator or using pH testing tapes.
Degassing the gel is important throughout the entire process. If bubbles form during gelation after the collagen mixture is injected into the device, they can be also removed by placing the device on ice for 10 min or more. By dropping the temperature, the size of bubbles reduces and the voids are eventually occupied by the gel mixture. The same method can be used when bubbles are trapped between pillars after adding culture medium to the reservoirs.
We used this technology to create mesofluidic devices that permit embedding of large multi-cellular constructs into a physiologically relevant extracellular matrix environment and integrating it with defined gradients of growth factors and other soluble bioactive molecules. High resolution stereolithography allowed us to produce high-quality, low-cost molds. The fabrication process does not require cleanroom facilities nor photolithography techniques, and thus allows a simple but effective generation of a 3D environment for cell culture and experimentation, which has multiple advantages vs. the traditional 2D experimentation. The device illustrated here was designed to have a culture area of 5 mm wide, 10 mm long, and 1 mm tall. The relatively large culture area with thicker height permits growth of mesoscopically large organoids or spheroids, ranging in size from tens to hundreds of micrometers. It also permits the analysis of branched epithelial morphogenesis, and analysis of collective and single cell migration within the 3D environment. The sides of the device are open wells that allow the use of standard pipettes to change media or to add drugs without the need for complicated interfacing with the liquid control devices, usually used for mainstream microfluidic devices. Moreover, the simple configuration of a PDMS chamber and a cover glass at the bottom is universally compatible with diverse microscopic systems. The use of the devices showed the biased branching direction of morphogenesis in normal breast tissue, in response to the imposed EGF gradient as a representative example for the usage of the device. However, this usage can also be extended to different tissues, cell sources, chemoattractants, and drugs for the analysis of cell/tissue behavior in 3D. The use also can be extended to accommodate more realistic tissue modeling, which would accommodate vascular network formation from individual cells within the gel along with incorporating of other cell types, including mesenchymal stromal and immune components and diverse epithelial cell types.
Although stereolithography offers the finest resolution among 3D printing techniques, the minimum feature size is still limited to several tens of micrometers. Therefore, this protocol is not sufficient to replace photolithography in fabricating molds at a scale of several micrometers. Another limitation of this protocol is the relatively low depth of high quality imaging in the z direction compared to the x-y direction, which is an inherent issue of imaging tissue-scale constructs, using conventional microscopy. However, even with these limitations, the described method can provide a powerful and flexible analysis platform that is easy to fabricate and use.
The authors have nothing to disclose.
This work was supported by grants to AJE (NSF PD-11-7246, Breast Cancer Research Foundation (BCRF-17-048), and NCI U54 CA210173) and AL (U54CA209992).
22mm x 22mm coverslip | Fisher Scientific | 12-542-B | |
Collagen I, Rat | Fisher Scientific | CB-40236 | |
Collagenease | Sigma-Aldrich | C5138 | |
COMSOL Multiphysics 4.2 | COMSOL Inc | Used for simulating diffusion dynamics | |
10x DMEM | Sigma-Aldrich | D2429 | |
DEME/F12 | Thermo Fisher | 11330032 | |
DNase | Sigma-Aldrich | D4623 | |
EGF Recombinant Mouse Protein | Thermo Fisher | PMG8041 | |
Fetal Bovine Serum (FBS) | Life technologies | 16140-071 | |
Fiji-ImageJ | Used for measuring branching length and angles | ||
Gentamicin | GIBCO | 5750-060 | |
IMARIS | Bitplane | ||
Insulin | Sigma-Aldrich | 19278 | |
Insulin-Transferrin-Selenium-X | GIBCO | 51500 | |
Low-lint tissue | Kimberly-Clark Professional | Kimtech wipe | |
Mold Material | Proto labs | Accura SL5530 | |
Mold printing equipment | Proto labs | Stereolithogrphy | Maximum dimension: 127mm x 127mm x 63.5mm, Layer thnickness: 0.0254mm |
Mold printing Service | Proto labs | Custom | https://www.protolabs.com/ |
NaOH | Sigma-Aldrich | S2770 | |
Penicillin/Streptomycin | VWR | 16777-164P | |
Spinning-disk confocal microscope | Solamere Technology Group | ||
Sylgard 184 | Electron Microscopy Sciences | 184 SIL ELAST KIT | PDMS kit |
Trypsin | Sigma-Aldrich | T9935 |