Waiting
로그인 처리 중...

Trial ends in Request Full Access Tell Your Colleague About Jove

21.5: Secondary Messengers in Hormone Action

TABLE OF
CONTENTS
JoVE Core
Anatomy and Physiology

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

Education
Secondary Messengers in Hormone Action
 
TRANSCRIPT

21.5: Secondary Messengers in Hormone Action

Water-soluble hormones cannot cross the plasma membrane, so they rely on protein receptors that span the membrane to trigger intracellular signaling pathways. These pathways then activate second messengers inside the cell, including cAMP or calcium ions.

Many hormones bind to transmembrane G protein-coupled receptors that connect to regulatory G proteins. These G proteins can then activate enzymes such as adenylyl cyclase or phospholipase C. Adenylyl cyclase converts ATP to cAMP, activating protein kinases. Kinases are enzymes that add phosphate groups to other proteins, initiating a phosphorylation cascade. Epinephrine, glucagon, parathyroid hormone, and luteinizing hormone all act through cAMP. For instance, epinephrine activates the β-adrenergic receptor, initiating the GPCR signaling cascade to regulate the "fight or flight" response.

Phospholipase C, conversely, breaks down the membrane phospholipid PIP2 into IP3 and DAG. IP3 then moves to the endoplasmic membrane and attaches to an IP3-gated calcium channel, which causes a release of calcium ions into the cytoplasm. The change in calcium concentration can induce physiological effects such as muscle contraction. Oxytocin and hypothalamic regulatory hormones amplify signals through PIP2 and calcium ions.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter