Waiting
로그인 처리 중...

Trial ends in Request Full Access Tell Your Colleague About Jove
Concept
JoVE Encyclopedia of Experiments
Encyclopedia of Experiments: Biological Techniques

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

 

Fluorescent Reporter-Based Paralysis Assay: A Technique to Assess Age-Associated Progressive Formation of Polyglutamine Fluorescent Reporter and Associated Paralysis in Caenorhabditis elegans

Article

Transcript

Cellular protein homeostasis, or proteostasis, involves the regulation of protein folding and function, along with degradation of misfolded proteins. During aging, proteostasis machinery declines, causing misfolded proteins to accumulate and further aggregate, resulting in cellular dysfunction.

To determine age-associated proteostasis decline, begin with developmentally synchronized, adult transgenic Caenorhabditis elegans.

The muscle cells of these worms express proteins with abnormally-expanded polyglutamine, or polyQ, repeats, fused with a fluorescent tag. PolyQ proteins are prone to misfolding, and hence upon accumulation, can form aggregates.

Transfer the worms onto a microscope slide comprising an agarose pad and immobilize with suitable chemical for live-cell imaging. Using a fluorescence microscope, visualize the worms' body wall muscles over a period of time to determine the bright, fluorescent foci signals, corresponding to the fluorescent polyQ aggregates.

Within days, owing to age-related proteostasis decline, progressive polyQ aggregate accumulation occurs, leading to higher number of fluorescent foci. The increased polyQ aggregates in muscle cells cause toxicity and disrupt muscle cell function, resulting in paralysis.

Under a microscope, record the number of live, paralyzed worms lacking movement upon mechanical stimuli. Increased worm paralysis rate suggests age-associated proteostasis decline in muscle tissue in the worms.

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter