Summary

Análisis y calcio monocanal Imaging en los podocitos de los glomérulos recién aisladas

Published: June 27, 2015
doi:

Summary

Changes in the intracellular calcium levels in the podocytes are one of the most important means to control the filtration function of glomeruli. Here we explain a high-throughput approach that allows detection of real-time calcium handling and single ion channels activity in the podocytes of the freshly isolated glomeruli.

Abstract

Podocytes (renal glomerular epithelial cells) are known to regulate glomerular permeability and maintain glomerular structure; a key role for these cells in the pathogenesis of various renal diseases has been established since podocyte injury leads to proteinuria and foot process effacement. It was previously reported that various endogenous agents may cause a dramatic overload in intracellular Ca2+ concentration in podocytes, presumably leading to albuminuria, and this likely occurs via calcium-conducting ion channels. Therefore, it appeared important to study calcium handling in the podocytes both under normal conditions and in various pathological states. However, available experimental approaches have remained somewhat limited to cultured and transfected cells. Although they represent a good basic model for such studies, they are essentially extracted from the native environment of the glomerulus. Here we describe the methodology of studying podocytes as a part of the freshly isolated whole glomerulus. This preparation retains the functional potential of the podocytes, which are still attached to the capillaries; therefore, podocytes remain in the environment that conserves the major parts of the glomeruli filtration apparatus. The present manuscript elaborates on two experimental approaches that allow 1) real-time detection of calcium concentration changes with the help of ratiometric confocal fluorescence microscopy, and 2) the recording of the single ion channels activity in the podocytes of the freshly isolated glomeruli. These methodologies utilize the advantages of the native environment of the glomerulus that enable researchers to resolve acute changes in the intracellular calcium handling in response to applications of various agents, measure basal concentration of calcium within the cells (for instance, to evaluate disease progression), and assess and manipulate calcium conductance at the level of single ion channels.

Introduction

Los riñones mantienen el equilibrio homeostático para diversas sustancias y regulan el volumen de sangre en una forma que determina la presión de la sangre total. Las perturbaciones en la filtración renal, reabsorción o plomo secreción o acompañar a los estados patológicos, que van desde la hiper o hipotensión que terminan enfermedad renal que eventualmente requiere un trasplante de riñón. La unidad de filtración renal (glomérulo) consiste en tres capas – el endotelio capilar, la membrana basal y una capa de una sola célula de las células epiteliales – podocitos, que desempeñan un papel importante en el mantenimiento de la integridad y la función 1-rendija de diafragma. Disfunción en el filtro glomerular de permeabilidad selectiva provoca la pérdida urinaria de macromoléculas, tales como proteinuria. Varios agentes pueden afectar a la estructura de los podocitos y sus procesos de pie, que determinan la integridad de la barrera de filtración glomérulos.

Los podocitos están involucrados en el mantenimiento de la Glomfunción de filtración eruli. Se ha establecido que el manejo inadecuado de calcio por el podocitos conduce a la lesión de las células y juega un papel importante en la progresión de diversas formas de nefropatías 2,3. Por lo tanto, el desarrollo de un modelo que permite la medición directa de los cambios de concentración de calcio intracelular será fundamental para el estudio de la función de podocitos. Glomérulos aislados se utilizaron previamente en un numerosos estudios incluyendo la medición del coeficiente de reflexión albúmina cambia 4 y la evaluación de las corrientes celulares integrales en las mediciones electrofisiológicas de patch-clamp de células enteras 5,6. En el presente trabajo se describe el protocolo que permite al investigador para medir cambios en la concentración de calcio intracelular en respuesta a las solicitudes de los agentes farmacológicos, estimar los niveles basales de calcio dentro de las células, y evaluar la actividad de los canales de calcio individual. Mediciones de la concentración de calcio y Ratometric electrop patch-clamphysiology se utilizaron para determinar los cambios en la concentración de calcio intracelular dentro de la actividad de podocitos y el canal, respectivamente.

Protocol

El uso de animales y el bienestar deben adherirse a la Guía del NIH para el Cuidado y Uso de Animales de Laboratorio siguiendo los protocolos revisados ​​y aprobados por el Cuidado y Uso de Animales Comité Institucional (IACUC). Flush 1. Riñón Emplear de 8 a 12 semanas de edad rata macho (sugerida es una cepa Sprague Dawley, sin embargo otras cepas de diferente edad y el género se pueden utilizar con los cambios apropiados). Anestesiar al animal de acuerdo con e…

Representative Results

Aquí abordamos el problema de la medición de los cambios agudos en los niveles de calcio en los podocitos. La figura 1 muestra una representación esquemática del protocolo experimental diseñado para realizar alta resolución de imagen confocal de fluorescencia en vivo y grabaciones de actividades individuales de los canales iónicos en los podocitos del recién glomérulos roedores aislados. En pocas palabras, después de que se anestesió la rata, los riñones deben lavarse con PBS para borrarlos …

Discussion

El enfoque descrito aquí permite el análisis de manejo del calcio por los podocitos de los glomérulos de roedores. Esta técnica permite la aplicación de patch-clamp electrofisiología solo canal y de fluorescencia de imagen confocal radiométrica. Sin embargo, ambos enfoques pueden ser utilizados por separado, por su propia cuenta. El protocolo propuesto tiene varios pasos relativamente simples, incluyendo ras 1) del riñón; 2) el aislamiento de los glomérulos por tamizado diferencial; 3) la realización de patch…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores desean agradecer a Glen Slocum (Colegio Médico de Wisconsin) y Colleen A. Lavin (Nikon Instruments, Inc.) para una excelente asistencia técnica con los experimentos de microscopía. Gregory Blass es reconocido por corrección crítica del manuscrito. Esta investigación fue financiada por los Institutos Nacionales de Salud de subvención HL108880 y la Asociación Americana de Diabetes conceder 1-15-BS-172 (AS), y el Ben J. Lipps de Becas de Investigación de la Sociedad Americana de Nefrología (DVI).

Materials

Fluo4 AM Life Technologies F14217 500µl in DMSO
FuraRed AM Life Technologies F-3020
Poly-L-lysine Sigma-Aldrich P4707
Pluronic acid Sigma-Aldrich F-68  solution
Ionomycin Sigma-Aldrich I3909-1ML
Tube rotator Miltenyi Biotec GmbH 130-090-753 Germany
Nikon confocal microscope (inverted) Nikon Nikon A1R  Laser exitation 488nm. Emission filters 500-550nm and 570-620nm
Objective Nikon Plan Apo 60x/NA 1.4 Oil
Cover Glass Thermo Scientific 6661B52
High vacuum grease Dow Corning Silicone Compound
Software Nikon Nikon NIS-Elements 
Recording/perfusion chamber Warner Instruments RC-26
Patch Clamp amplifier Molecular Devices MultiClamp 700B
Data Acquisition System Molecular Devices Digidata 1440A Axon Digidata® System
Low Pass Filter Warner Instruments LPF-8 8 pole Bessel
Borosilicate glass capillaries World Precision Instruments 1B150F-4
Micropipette Puller Sutter Instrument Co P-97 Flaming/Brown type micropipette puller
Microforge Narishige MF-830 Japan
Motorized Micromanipulator Sutter Instrument Co MP-225
Inverted microscope Nikon Eclipse Ti
Microvibration isolation table TMC equipped with Faraday cage
Multichannel valve perfusion system AutoMake Scientific Valve Bank II
Recording/perfusion chamber Warner Instruments RC-26
Software Molecular Devices pClamp 10 . 2
Nicardipine Sigma-Aldrich N7510
Iberiotoxin Sigma I5904-5UG
Niflumic acid Sigma-Aldrich N0630
DIDS Sigma-Aldrich D3514-25MG
TEA chloride Tocris T2265
RPMI 1640 Life Technologies 11835030 without antibiotics
BSA Sigma-Aldrich A8327 30% albumin solution
Temperature controlled surgical table  MCW core for rodents
Steel sieves: #100 (150 μm), 140 (106 μm)
Gilson, Inc  SIEVE 3 SS FH NO200 Fisher Sci 50-871-316
Gilson, Inc  SIEVE 3 SS FH NO270 Fisher Sci 50-871-318
Gilson, Inc  SIEVE 3 SS FH NO400 Fisher Sci 50-871-320
 mesh 200  Sigma-Aldrich s4145 screen for CD-1
Binocular microscope Nikon Eclipse TS100
Binocular microscope Nikon SMZ745
Syringe pump-based perfusion system Harvard Apparatus
polyethylene tubing Sigma-Aldrich PE50
Isofluorane anesthesia http://www.vetequip.com/ 911103
Other basic reagents Sigma-Aldrich

References

  1. Machuca, E., Benoit, G., Antignac, C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum. Mol. Genet. 18, R185-R194 (2009).
  2. Haraldsson, B., Nystrom, J., Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451-487 (2008).
  3. Patrakka, J., Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463-468 (2009).
  4. Savin, V. J., Sharma, R., Lovell, H. B., Welling, D. J. Measurement of albumin reflection coefficient with isolated rat glomeruli. J. Am. Soc. Nephrol. 3, 1260-1269 (1992).
  5. Gloy, J., et al. Angiotensin II depolarizes podocytes in the intact glomerulus of the Rat. J. Clin. Invest. 99, 2772-2781 (1997).
  6. Nitschke, R., et al. Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. Kidney Int. 57, 41-49 (2000).
  7. Ilatovskaya, D., Staruschenko, A. Single-channel analysis of TRPC channels in the podocytes of freshly isolated glomeruli. Methods Mol Biol. 998, 355-369 (2013).
  8. Snitsarev, V. A., McNulty, T. J., Taylor, C. W. Endogenous heavy metal ions perturb fura-2 measurements of basal and hormone-evoked Ca2+ signals. Biophys. J. 71, 1048-1056 (1996).
  9. Fukuda, A., Fujimoto, S., Iwatsubo, S., Kawachi, H., Kitamura, K. Effects of mineralocorticoid and angiotensin II receptor blockers on proteinuria and glomerular podocyte protein expression in a model of minimal change nephrotic syndrome. Nephrology (Carlton). 15, 321-326 (2010).
  10. Abramowitz, J., Birnbaumer, L. Physiology and pathophysiology of canonical transient receptor potential channels). FASEB J. 23, 297-328 (2009).
  11. Heeringa, S. F., et al. A novel TRPC6 mutation that causes childhood FSGS. PLoS ONE. 4, e7771 (2009).
  12. Zhang, X., Song, Z., Guo, Y., Zhou, M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol. Cell. Biochem. 399, 155-165 (2015).
  13. Bohrer, M. P., et al. Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules. J. Clin. Invest. 60, 152-161 (1977).
  14. Olson, J. L., Rennke, H. G., Venkatachalam, M. A. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab. Invest. 44, 271-279 (1981).
  15. Schiessl, I. M., Castrop, H. Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study. Am J Physiol Renal Physiol. 305, F1189-F1200 (2013).
  16. Ilatovskaya, D. V., Levchenko, V., Ryan, R. P., Cowley, A. W., Staruschenko, A. NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli. Biochem. Biophys. Res. Commun. 408, 242-247 (2011).
  17. Peti-Peterdi, J. Calcium wave of tubuloglomerular feedback. Am. J. Physiol. Renal Physiol. 291, F473-F480 (2006).
  18. Peti-Peterdi, J., Warnock, D. G., Bell, P. D. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J. Am. Soc. Nephrol. 13, 1131-1135 (2002).
  19. Ilatovskaya, D. V., Palygin, O., Levchenko, V., Staruschenko, A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am. J. Physiol. Cell Physiol. 305, C1050-C1059 (2013).
  20. Ilatovskaya, D. V., et al. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int. 305, C1050-C1059 (2014).
  21. Schaldecker, T., et al. Inhibition of the TRPC5 ion channel protects the kidney filter. J. Clin. Invest. 123, 5298-5309 (2013).
  22. Roshanravan, H., Dryer, S. E. ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am. J. Physiol. Renal Physiol. 306, F1088-F1097 (2014).
  23. Anderson, M., Roshanravan, H., Khine, J., Dryer, S. E. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J. Cell. Physiol. 229, 434-442 (2014).

Play Video

Cite This Article
Ilatovskaya, D. V., Palygin, O., Levchenko, V., Staruschenko, A. Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli. J. Vis. Exp. (100), e52850, doi:10.3791/52850 (2015).

View Video