资料来源: 玛格丽特工人和金伯利弗莱-Depaul 大学实验室
元素分析是一种方法用于确定元素组成的一种材料。在环境样品,如土壤,科学家特别感兴趣的两个重要生态价值的元素、 氮、 碳的数额。元素分析由闪存燃烧技术的工作原理是氧化催化剂通过燃烧在高低温箱的样品。燃烧后的产物是减少到 N2和 CO2 ,然后用热导检测器检测。
不同于其他方法总氮测定 (凯氏定氮法) 和总碳测定 (酸钾黑色,Heanes 或 Leco 方法),闪存燃烧技术不使用有毒的化学物质,因此更安全使用。
这个视频将演示使用 Flash EA 1112 仪器从热费希尔科学基于燃烧的元素分析。
土壤样品都放在锡盘,落入氧化反应器通过自动进样器在何处它燃烧在大于 900 ° C 氧化催化剂存在下氧气环境中。样品中的碳转化为二氧化碳和氮转化为氮气和一些氮氧化物。
C + O2 → CO2
4 N + x O2 → N2 + 2 没有x
氦气携带这些产品进入充满铜氮气减少氮氧化物并删除多余氧气的第二反应管。这被完成在 680 ° c。
没有x + 铜 → N2 + 厝
O2 + 铜 → 厝
然后,气体流流经充满高氯酸镁之前要移除任何水蒸气流到达气相色谱仪列筛选器。
N2将退出气相色谱柱首先在大约 110 s,然后退出在大约 190 美国使用可以确定创建使用土壤样品中的天冬氨酸、 %N 和 %C 标准曲线的 CO2意愿。
1.土壤样品的制备
2.设置仪器参数
3.创建标准曲线
4.加载自动进样器与土壤样品
5.运行示例
图 1。Flash EA 1112 参数设置屏幕 1。
图 2。Flash EA 1112 参数设置屏幕 2。
图 3。Flash EA 1112 参数设置屏幕 3。
图 4。用镊子删除锡盘。
图 5。塑造成杯形状使用密封装置的锡盘。
图 6。锡的包被放入自动进样器。
分析碳和氮的过程被称为”元素分析”-环境样品中的数额,重要洞察环境的生态属性。
碳、 氮是两个生命的最重要因素。碳是有机化合物,形成天地万物的基础的基础,也是作为一项措施为分子,如碳水化合物、 生物体的主要能量来源尤其有用。另一方面,氮是发现在分子核酸和氨基酸等。这些服务,分别作为遗传材料以及用于由生物体结构和功能蛋白质的基石。
因为这些不同种类的有机分子有不同的生物学作用,生物体需要他们不同的款额。例如,在土壤中的微生物通常需要食物来源,碳氮比为 24:1。因为不同的植物残体有不同碳氮比,从 13:1,如苜蓿,到 57: 1,如玉米,他们将通过以不同的速率和程度不同,反过来影响如何将养分归还给土壤的微生物分解。
这个视频将介绍的原则分析碳和氮元素组成;一项议定书进行元素分析的土壤样品;和最后,某些应用程序的这种分析方法对环境的研究。
元素分析可以执行方式有多种方式,如使用的特定的化学反应,往往涉及强酸,从而可以检测到的特色产品。元素分析方法的主要改进是闪速燃烧技术,它删除需要使用危险化学品,大大简化和加快这一进程,发展和允许的自动化。
闪存和基于燃烧的元素分析的基础是通过燃烧氧气在催化剂作用下大约 1000 ℃ 高温,加快反应氧化”氧化室,”中的示例。这转化为二氧化碳气体和氮气到氮氧化物和氮气体样品中的碳。惰性”承运人气”如氦然后用来运输这些铜充填,一个”减分庭”的燃烧产物的氮氧化物是进一步转换成氮气。多余的水蒸气是过滤与干燥剂等高氯酸镁从气体混合物中删除。
然后,可以用气相色谱法,其间气体分子通过油管,称为包含的液体或聚合物涂层薄列分隔闪存的燃烧产物。气体一再解散,并从这种基质蒸发,当他们通过列,取决于如何强烈了分子间相互作用与基材及载气的速度。花更多时间溶解在承印物上的物种将更缓慢穿越列,从而使气体将被区分。
一旦他们退出列,气体可以通过,例如,检测他们如何搞好热,称为热导率的属性。通过绘制每种气体的旅行通过线圈所花费的时间,科学家们获得”色谱”代表每种气体的高峰期。通过计算检测到的大量二氧化碳和氮气体使用各自的峰面积,然后可以推导出原始样品中的碳氮比。
现在,您了解使用 flash 燃烧法的碳和氮元素分析的原则,通过执行这使用自动化的元素分析仪的协议吧。
为了准备分析土壤样品,首先,干燥 48 h 60 ° C 烘箱中的示例。然后在此基础上,通过一个 2 x 2 毫米的筛子,土壤干,放弃不能通过任何土壤颗粒。接下来,使用球磨机磨磨大约 5 克的 2 分钟,使均匀的粉土。把磨碎的土放进一个小的容器,例如聚乙烯瓶,并保存在干燥器中,直到准备使用。
按照制造商的说明的元素分析仪上设置分析参数。这些包括氧化炉、 还原炉和气相色谱法测定烘箱的温度、 流量的载气、 氧注射速率、 流量参考气、 周期运行时间、 样品滴和氧注射进入氧化室和氧注射持续时间之间的延迟。
为了定量地确定样品的组成,标准曲线是首次创建使用不同量的一种化合物的已知成分,如天冬氨酸。
为此,首先用镊子从包中取出锡样本控股光盘和塑造成杯状,使用专门的密封装置。避免接触锡盘用你的手指,因为这可以导致油刻录在光盘上的转让。
现在,锡杯放电子天平,并设置皮重大众。删除锡杯中,然后使用 microspatula 将大约 1 毫克的天冬氨酸标准放进杯子里。权衡的杯和记录质量。然后在此基础上,密封的锡杯,放入自动进样器,它自动将每个样品到反应室。
重复上述步骤为几个数额的标准。然后,放入自动进样器的所有标准。
免除,重锡杯的土壤样本同样作为标准,使用大约 50 毫克的每个均质的土壤样品。准备每个样本一式三份。
一旦所有样品都放入自动进样器,并在文书中取得了适当的温度下,设置测量运行。仪器软件会为每个标准和样品色谱图。
根据使用的参数,氮气高峰期应在约 110 s 色谱,二氧化碳峰值检测在大约 190 美国标准曲线时生成与天冬氨酸,有碳氮比为 4 比 1。与这方面的知识,以及集中的每个标准,每个峰下的区域可以用于计算每个样本中氮和碳的量。
基于原始试样的质量,可以计算 %氮和 %碳的每个样本。在这个演示中,c:n 这土样被发现要约 13:1,低于 14.25:1 通常找下开阔林地和指示以创欧洲沙棘树为主的森林土壤的比率。
碳、 氮含量分析可以应用于各种土壤,除了环境样品和环境研究中有着广泛的应用。
在此示例中,研究人员从各种海洋生境,珊瑚礁等收集水样本。要理解到海洋微生物群落的有机养分的有效性,测量各种化学参数,包括碳和氮元素分析。溶解有机碳的直接测定水平从水样中,虽然颗粒有机物是从水过滤和分析。
元素分析也可以用于监测中的城市景观和草坪,可能会污染水源灌溉径流养分流失。在这里,科学家们建立了试验田来模拟城市的景观和更好地理解这一过程。各种化学测试用来分析特定营养素如硝酸盐和氨对径流收集的影响,并基于燃烧的元素分析用来测量溶解有机碳和氮的水平。
最后,分析在草食动物屠体 c:n 透露捕食风险和在土壤中的分解速率之间有趣的联系。在此研究中,蝗虫饲养有或无的捕食风险的蜘蛛。这些蝗虫的尸体只被允许在剧情的土壤,分解和植物碎屑后来添加到分解的土壤。
元素分析表明轻微增加的 c:n 蝗虫养殖具有捕食风险,但这反过来导致显著下降率的分解,分解压力的蚱蜢是的土壤中指向意外复杂动力学在生态系统养分循环。
你刚看了朱庇特的视频环境样品分析碳和氮。你现在应该明白这种分析方法背后的原则如何执行它使用 flash 燃烧元素分析仪;和一些在环境科学中的应用。一如既往,感谢您收看 !
为每个样品色谱图被生产样品 (图 7) 中显示的氮和碳量。
在每个样品色谱峰曲线下的面积与标准曲线 (图 8 和图 9),进行比较和计算样品中氮和碳量。基于原始样品的重量,%N 和 %C 是计算 (图 10)。
请单击此处以查看此图的大版本。
图 7。色谱显示氮和碳的山峰。
图 8。测定氮的标准曲线。
图 9。碳的测定标准曲线。
图 10。%N 和 %c,基于原始样品的重量计算。
在土壤中的氮 (碳氮) 比碳的比例是质量的碳的土壤样品中氮。C:n 土壤和任何东西放到土壤 (如作物残茬覆盖) 可以影响作物残渣分解和养分的循环。土壤中的微生物有大约 8:1 碳氮比。要保持这个比率,他们必须获得他们的碳和氮从环境。然而,由于一些微生物获取碳必须用作除了它所需要的身体保养的能量源,微生物需要大约 24:1 碳氮比。如果比 24:1 高的碳氮比叶凋落物或土壤盖放置在土壤(例如.,玉米秸秆碳氮比为 57: 1),微生物将需要使用从土壤氮分解垃圾材料。这会导致土壤中的氮赤字。如果低于 24:1 放置在土壤 (例如,苜蓿干草,碳氮比为 13:1),在那里碳氮比叶凋落物或土壤盖将一些垃圾材料,它将作为营养物质被释放到土壤分解后剩余的氮。
元素分析不仅可以用于确定 c:n 个土壤样品,而且还可以用于确定 c:n 植物物质,如树叶和作物残留物。此信息是重要的农民,帮助他们决定什么类型的作物覆盖使用。C:n 作物残留物的添加来遮住土壤,影响残留会如何迅速分解。这已对土壤是否或不保护所需的时间长度的影响。
Analyzing the amounts of the carbon and nitrogen in environmental samples – a process known as “elemental analysis” – provides important insight into the ecological properties of the environment.
Carbon and nitrogen are two of the most important elements for life. Carbon is the foundation of organic compounds that form the basis of all living things, and is particularly useful as a measure for molecules such as carbohydrates, the primary energy source for organisms. On the other hand, nitrogen is found in molecules such as nucleic and amino acids. These serve, respectively, as genetic material and as the building blocks of the proteins used by organisms for structure and function.
Because these different classes of organic molecules have different biological roles, organisms require them at different amounts. For example, microorganisms in soil typically require food sources with a C:N ratio of 24:1. Because different plant residues have different C:N ratios that range from 13:1, such as alfalfa, to 57:1, as in corn, they will be decomposed by microbes at different rates and to different extents, in turn affecting how nutrients are returned to the soil.
This video will introduce the principles of analyzing carbon and nitrogen elemental composition; a protocol for performing elemental analysis on soil samples; and finally, some applications of this analysis method to environmental research.
Elemental analysis can be performed in a number of ways, such as the use of specific chemical reactions, often involving strong acids, resulting in characteristic products that can be detected. A major improvement in elemental analysis methodology was the development of the flash combustion technique, which removed the need for using dangerous chemicals, greatly simplified and sped up the process, and allowed for automation.
The basis of flash combustion-based elemental analysis is to oxidize the sample in an “oxidation chamber”, by burning it in the presence of oxygen at high temperatures of around 1,000 °C in the presence of a catalyst, which speed up the reaction. This converts the carbon in the sample into carbon dioxide gas, and the nitrogen into nitrogen oxide and nitrogen gases. An inert “carrier gas” such as helium is then used to transport these combustion products to a “reduction chamber” with copper filling, where the nitrogen oxides are further converted into nitrogen gas. Excess water vapor is removed from the gas mixture by filtration with a desiccant such as magnesium perchlorate.
The flash combustion products can then be separated by gas chromatography, during which the gas molecules pass through tubing, called a column, containing a thin coating of liquid or polymer. The gases repeatedly dissolve and vaporize from this substrate as they pass through the column, at rates that are dependent on how strongly the molecules interact with the substrate and the carrier gas. A species that spends more time dissolved in the substrate will travel more slowly through the column, thus allowing the gases to be differentiated.
Once they exit the column, the gases can be identified by, for example, detecting how well they conduct heat, a property known as thermal conductivity. By plotting the time it takes each gas to travel through the coil, scientists obtain a “chromatogram” with peaks that represent each gas. By calculating the detected amounts of carbon dioxide and nitrogen gases using the area under the respective peaks, the C:N ratio in the original sample can then be deduced.
Now that you understand the principles of carbon and nitrogen elemental analysis using the flash combustion method, let’s go through a protocol for performing this using an automated elemental analyzer.
To prepare the soil samples for analysis, first, dry the samples in a 60 °C oven for 48 h. Then, pass the dried soil through a 2 x 2-mm sieve, and discard any soil particle that doesn’t pass through. Next, use a ball mill grinder to grind approximately 5 g of the soil for 2 min to make a homogeneous powder. Put the milled soil into a small container such as a polyethylene vial, and store it in a desiccator until ready to use.
Set the analysis parameters on the elemental analyzer according to manufacturer’s instructions. These include the temperatures of the oxidation furnace, the reduction furnace, and the gas chromatography oven, the flow rate of the carrier gas, the oxygen injection rate, the flow rate of the reference gas, the cycle run time, the delay between sample drop and oxygen injection into the oxidation chamber, and the duration of oxygen injection.
In order to quantitatively determine the composition of the sample, a standard curve is first created using different amounts of a compound of known composition, such as aspartic acid.
To do this, first use forceps to remove a tin sample-holding disc from a pack and mold it into a cup shape using the specialized sealing device. Avoid touching the tin disc with your fingers, as that could lead to the transfer of oils onto the disc.
Now, place the tin cup on a microbalance, and set the tare mass. Remove the tin cup, then use a microspatula to place approximately 1 mg of the aspartic acid standard into the cup. Weigh the cup and record the mass. Then, seal the tin cup, and place it into the autosampler, which will automatically deliver each sample into the reaction chamber.
Repeat the above steps for several amounts of the standard. Then, place all standards into the autosampler.
Dispense and weigh the soil samples in tin cups similarly as the standards, using approximately 50 mg of each homogenized soil sample. Prepare each sample in triplicate.
Once all samples are placed into the autosampler, and the appropriate temperatures have been reached in the instrument, set the measurements to run. The instrument software will produce a chromatogram for each standard and sample.
Depending on the parameters used, the peak for nitrogen gas should be at about 110 s on the chromatogram, while the carbon dioxide peak is detected at around 190 s. Standard curves are generated with aspartic acid, which has a carbon to nitrogen ratio of 4 to 1. With this knowledge, along with the concentration of each standard, the area under each peak can be used to calculate the amount of nitrogen and carbon in each sample.
Based on the mass of the original sample, the percent-nitrogen and percent-carbon of each sample can be calculated. In this demonstration, the C:N ratio of this soil sample was found to be approximately 13:1, lower than the ratio of 14.25:1 usually found for soil under open woodlands and indicative of woods dominated by the invasive European buckthorn trees.
Carbon and nitrogen content analysis can be applied to a variety of environmental samples in addition to soil, and has wide applications in environmental research.
In this example, researchers collected water samples from various marine habitats, such as coral reefs. To understand the availability of organic nutrients to marine microbial communities, various chemical parameters were measured, including carbon and nitrogen elemental analysis. Levels of dissolved organic carbon were directly measured from the water sample, while particulate organic matter was filtered from the water and analyzed.
Elemental analysis can also be used to monitor nutrient loss in runoff from the irrigation of urban landscapes and lawns, which can pollute water supplies. Here, scientists set up test plots to simulate urban landscapes and better understand this process. A variety of chemical tests were used to analyze specific nutrients such as nitrates and ammonia in the collected runoff, and combustion-based elemental analysis was used to measure the levels of dissolved organic carbon and nitrogen.
Finally, analyzing the C:N ratio in herbivore carcasses revealed an interesting link between predation risk and the decomposition rate in soil. In this study, grasshoppers were reared with or without the risk of predation by spiders. Carcasses of these grasshoppers were then allowed to decompose in plots of soil, and plant detritus were later added to the soil for decomposition.
Elemental analysis showed slightly increased C:N ratio in grasshoppers reared with predation risk, but this in turn led to significantly decreased rate of decomposition in soil in which the stressed grasshopper was decomposed, pointing to unexpected complex dynamics in ecosystem nutrient cycling.
You’ve just watched JoVE’s video on carbon and nitrogen analysis of environmental samples. You should now understand the principles behind this method of analysis; how to perform it using a flash combustion elemental analyzer; and some of its applications in environmental science. As always, thanks for watching!
Related Videos
Environmental Science
81.1K 浏览
Environmental Science
49.3K 浏览
Environmental Science
12.5K 浏览
Environmental Science
22.0K 浏览
Environmental Science
53.0K 浏览
Environmental Science
89.4K 浏览
Environmental Science
35.8K 浏览
Environmental Science
55.6K 浏览
Environmental Science
38.8K 浏览
Environmental Science
26.4K 浏览
Environmental Science
30.0K 浏览
Environmental Science
125.2K 浏览
Environmental Science
29.3K 浏览
Environmental Science
215.5K 浏览
Environmental Science
16.4K 浏览