源: 罗伯特· m Rioux, 阿杰萨特和 #38; 刘志峰, 宾夕法尼亚州立大学, 宾夕法尼亚大学公园, PA
许多实验室程序需要真空。这是最常规的实现在实验室的使用真空泵。除了在低压下工作外, 真空泵还可用于通过疏散和回填使反应堆或烧瓶中的大气迅速变化.
真空对于实验室的各种用途是有用的。例如, 真空降低液体的沸点, 并促进蒸发过程, 这是用于真空烤箱, 脱气设备, 冷冻干燥。此外, 真空产生的压力差比大气, 这是用于过滤和管。超高真空消除空气达到化学惰性, 这是用于电子束焊接, 保持清洁的表面和化学或物理气相沉积。真空泵是一种能帮助疏散密封腔的装置, 以达到比大气压低的压力。实验室中最常用的泵是分子泵、油泵、干式涡旋泵或水器.
分子泵通常用于实验室仪器, 如在质谱仪内, 并能达到真空水平 10 -10 乇。这些工作通过快速旋转与空气或蒸气分子碰撞, 以撞击向排气方向的动量。高真空水平有一个泵适用于许多超高速真空应用。然而, 空气是过于密集的分子泵工作, 因此, 这些泵需要一个二次泵下降的大气压下降到1乇, 使分子泵工作.
油泵通常在实验室中使用, 通常可实现 10 -3 乇的真空。这符合一般实验室的大部分应用, 而且很容易操作。油是用来润滑和密封泵, 这有助于实现深真空。然而, 石油的使用也带来了石油变化和废油处置的问题.
干式涡旋泵能够实现 10 -3 乇的最终真空度, 是实验室环境中使用最常见的干泵技术之一。干涡旋泵工作时, 两个交错螺旋卷轴移动偏心和压缩空气和蒸气向排气。这种泵不 #39, 也不需要油, 而且泵的速度更快, 这对某些应用如手套箱有吸引力。然而, 尖端密封需要保持蒸汽在正确的渠道, 但这些尖端密封是磨损部件和需要定期维护.
水器, 也被称为水射流泵, 通常连接到实验室水槽水龙头和可能达到真空水平10-15 乇。这些工作是利用快速流动的水来制造侧臂的真空。由于其低廉的成本, 这些都是历史上流行的实现深真空。然而, 水是浪费和真空水平不高.
选择泵的类型取决于最终应用程序和最终需要的真空质量。无论使用哪种泵, 真空的产生都可能导致爆震或爆炸的危险。为了尽量减少与使用真空设备有关的风险并确保安全的工作条件, 概述了下列协议.
1. 使用个人防护设备
2。使用适当的油管和设备
3。陷阱
4。出血线
5。玻璃器皿涂层
真空泵在大量的实验室程序中使用。常见的例子包括过滤, 干燥, 脱气, 蒸发涂层和质谱.
泵设备必须保持和安全运行, 以防止设备故障、爆炸和化学释放。此视频将介绍几种常见的水泵设计, 讨论在设置真空设备时应注意的常见预防措施, 并演示操作安全.
让我们开始探索各种泵的设计.
在旋转叶片泵的空气和其他气体是通过一个入口的转子绘制。这些气体是通过油封的排气, 防止回流, 到出口离开系统。旋转叶片泵可以产生真空十到负三乇。这些泵是自润滑的, 但需要油的变化, 容易受到水蒸汽腐蚀.
在滚动泵的空气通过一个入口之间的两个偏心螺旋卷轴, 一个固定, 另一个轨道。运动压缩空气并将其推向出口。真空吸尘器的十到负两乇可以实现。滚动泵是 “干” 的机制-他们不需要油或水, 但卷轴必须定期更换, 因为他们磨损。涡旋泵和旋转叶片泵适用于蒸馏、过滤和脱气.
水器是实验室中经常发现的另一种类型的泵。在这种类型的泵水进入一个入口的高速喷嘴, 并退出作为一个低压流体射流。气体通过侧口被抽入并且被强迫到出口。水器产生的真空只有10乇。虽然他们很容易连接到普通水槽水龙头, 他们需要大量的水。水器常用于干燥和萃取.
最后, 分子泵产生超高真空。空气是通过交流定子和涡轮叶片迫使气体分子通过出口连接到一个粗加工泵。分子泵可以产生真空低至十的负十乇, 但需要另一泵首先降低压力, 以1乇。分子泵用于电子显微镜、晶体生长和蒸发涂层。
现在您已经熟悉了这些设计, 让我们来检查一下在操作这些真空泵之前应该注意的个人防护和安全措施。
如果可能的话, 操作所有的真空设备在一个油烟罩与窗扇降低。戴上安全护目镜和面罩。这些提供了防止化学品和碎片的保护, 以防玻璃器皿在真空下爆.
使用玻璃器皿和设备的额定使用与预期的真空水平。检查玻璃器皿和管材是否有裂纹或其它缺陷。有缺陷或不适当的设备在真空下容易爆裂。用胶带、网子或塑料包装大于250毫升的玻璃器皿, 作为防止飞行碎片的进一步预防措施.
如果已知该过程产生腐蚀性蒸气, 请选择能够承受这些蒸汽的泵。确保泵的清洁和无腐蚀。对于油泵, 检查油位, 定期更换机油.
确保泵的水平和平衡。将泵出口连接到通风柜排气口。安全地放置在发动机罩内的油管, 以防止化学品的释放。确保所有油管不受限制, 并且没有泄漏, 特别是在法兰附近.
现在已设置真空泵, 让我们检查泵运行期间和之后的安全注意事项.
通过冷阱将水泵入口连接到玻璃器皿。一个冷的陷阱是一个玻璃容器, 保护泵通过冻结挥发性有机物从设备撤离.
在过程中, 冷阱被浸没在干冰或液氮的杜瓦瓶中。在处理这些冷却剂时, 使用低温保护设备.
一个潜在的危险是冷阱中的氧气凝结产生高爆炸性的液氮。为防止其形成, 启动真空泵并在淹没前将设备疏散液氮中的冷阱。千万不要让冷陷阱接触液氮, 如果不在真空下, 绝不打开真空线, 以空气中的冷陷阱到位.
定期检查冷凝溶剂和液态氧的冷阱。如有必要清空冷阱, 防止溶剂进入油管和真空泵。如果液体氧气, 淡蓝色液体, 是可看见的, 终止做法和要求协助, 但不停止真空或去除液氮.
程序完成后, 从冷却液中取出冷阱, 然后关闭泵。在断开冷阱和泵之前, 先将真空线慢慢排出, 以防突然加压.
您刚刚观看了朱庇特的 vacuum-based 设备实验室安全介绍。您现在应该熟悉不同类型的真空泵, 它们的潜在危害, 以及要遵守的预防措施, 以确保安全运行。一如既往, 感谢收看!
需要真空的操作有多个与之相关的危险。容器内爆会导致飞溅的玻璃和其他材料, 释放化学物质到工作环境中, 并可能因液态氧凝结而起火。应正确设置真空作业, 并在发现潜在风险并适当减轻后才进行操作。
Vacuum pumps are employed in a wide array of laboratory procedures. Common examples include filtration, drying, degassing, evaporative coating, and mass spectrometry.
Pump equipment must be maintained and operated safely to prevent equipment failures, explosions and chemical release. This video will introduce several common pump designs, discuss common precautions to be observed when setting up vacuum equipment, and demonstrate operational safety.
Let’s begin by exploring various pump designs.
In rotary-vane pumps air and other gases are drawn through an inlet by a rotor. The gases are forced via an oil-sealed exhaust, which prevents backflow, to the outlet leaving the system. Rotary vane pumps can generate vacuums of ten to the negative three Torr. These pumps are self-lubricating, but require oil changes and are vulnerable to corrosion by water vapor.
In scroll pumps air passes through an inlet between two eccentric spiral scrolls, one fixed, the other orbiting. The motion compresses the air and pushes it toward the outlet. Vacuums of ten to the negative two Torr can be achieved. Scroll pumps are “dry” mechanisms – they do not require oil or water, but the scrolls must be periodically replaced as they wear down. Scroll pumps and rotary-vane pumps are suitable for distillation, filtration, and degassing.
A water aspirator is another type of pump often found in laboratories. In this type of pump water enters through an inlet to a high-speed nozzle, and exits as a low-pressure fluid jet. The gases are drawn in through a side port and forced to the outlet. Water aspirators produce vacuums of only 10 Torr. Although they easily connect to ordinary sink faucets, they require large amounts of water. Water aspirators are frequently used for drying and extraction.
Lastly, turbomolecular pumps produce ultrahigh vacuum. Air is forced in through alternating stator and turbine blades that drive the gas molecules through the outlet connected to a roughing pump. Turbomolecular pumps can produce vacuums as low as ten to the negative ten Torr, but require another pump to first lower the pressure to 1 Torr. Turbomolecular pumps are used for electron microscopy, crystal growth, and evaporative coating.
Now that you’re familiar with the designs, let’s examine personal protection and safety measures that should be observed before operating these vacuum pumps.
If possible, operate all vacuum equipment inside a fume hood with the sash lowered. Wear safety goggles and a face shield. These provide protection against chemicals and debris in case the glassware implodes under the vacuum.
Use glassware and equipment rated for use with the expected level of vacuum. Check the glassware and tubing for cracks or other defects. Defective or inappropriate equipment can easily implode under vacuum. Wrap glassware larger than 250 mL in tape, netting, or plastic, as a further precaution against flying debris.
If the procedure is known to generate corrosive vapors, select a pump that can withstand those vapors. Ensure the pump is clean and free from corrosion. For oil pumps, check the oil level and change the oil periodically.
Ensure the pump is level and balanced. Connect the pump outlet to the fume hood exhaust. Securely place tubing inside the hood to prevent the release of chemicals. Ensure all tubing is unrestricted, and that there are no leaks, especially near the flanges.
Now that the vacuum pump is set up, let’s examine safety considerations during and after pump operation.
Connect the pump inlet to the glassware via a cold trap. A cold trap is a glass container that protects the pump by freezing volatile organics evacuated from the apparatus.
During the procedure, the cold trap is submerged in dry ice or a Dewar of liquid nitrogen. Use cryogenic protective equipment when handling these coolants.
A potential hazard is the condensation of oxygen in the cold trap to yield highly explosive liquid nitrogen. To prevent its formation, start the vacuum pump and evacuate the apparatus before submerging the cold trap in liquid nitrogen. Never allow the cold trap to contact liquid nitrogen if not under vacuum, and never open the vacuum line to air with the cold trap in place.
Check the cold trap for condensed solvents and liquid oxygen regularly. If necessary empty the cold trap to prevent solvents entering the tubing and vacuum pump. If liquid oxygen, a light blue fluid, is visible, terminate the procedure and call for assistance, but do not stop the vacuum or remove the liquid nitrogen.
Once the procedure is complete, withdraw the cold trap from the coolant and then switch off the pump. Bleed the vacuum lines slowly before disconnecting the cold trap and pump, to prevent sudden pressurization.
You’ve just watched JoVE’s introduction to lab safety for vacuum-based equipment. You should now be familiar with different types of vacuum pumps, their potential hazards, and precautions to be observed to ensure safe operation. As always, thanks for watching!
Related Videos
Lab Safety
234.5K 浏览
Lab Safety
82.3K 浏览
Lab Safety
42.0K 浏览
Lab Safety
95.6K 浏览
Lab Safety
41.4K 浏览
Lab Safety
183.2K 浏览
Lab Safety
108.4K 浏览
Lab Safety
44.7K 浏览
Lab Safety
87.4K 浏览
Lab Safety
87.5K 浏览
Lab Safety
68.7K 浏览
Lab Safety
21.9K 浏览
Lab Safety
15.8K 浏览
Lab Safety
28.7K 浏览
Lab Safety
16.1K 浏览
Lab Safety
102.0K 浏览
Lab Safety
199.8K 浏览