Waiting
Traitement de la connexion…

Trial ends in Request Full Access Tell Your Colleague About Jove

12.17: Aldehydes and Ketones to Alkenes: Wittig Reaction Overview

TABLE OF
CONTENTS
JoVE Core
Organic Chemistry

Un abonnement à JoVE est nécessaire pour afficher ce contenu. Connectez-vous ou commencez votre essai gratuit.

Education
Aldehydes and Ketones to Alkenes: Wittig Reaction Overview
 
TRANSCRIPT

12.17: Aldehydes and Ketones to Alkenes: Wittig Reaction Overview

The Wittig reaction is the conversion of carbonyl compounds—aldehydes and ketones—to alkenes using phosphorus ylides, or the Wittig reagent. The reaction was pioneered by Prof. Georg Wittig, for which he was awarded the Nobel Prize in Chemistry.

Figure1

Phosphorus ylide is a neutral molecule containing a negatively charged carbon directly bonded to a positively charged phosphorus atom. The molecule is stabilized by resonance.

Figure2

The Wittig reagents are synthesized from unhindered alkyl halides in two steps. At first, the alkyl halide undergoes an SN2 attack by a triphenylphosphine molecule generating a phosphonium salt. Next, in the presence of a strong base such as butyllithium, sodium hydride, or sodium amide, the salt undergoes deprotonation of the weakly acidic α hydrogen, producing the carbanionic ylide nucleophile.

Figure3

Wittig reactions are regioselective, as the new C=C bond is formed explicitly at the carbonyl position. The stereoselectivity depends on the nature of the phosphorus ylide. Ylides with electron-withdrawing groups, such as carbonyl or aromatic rings that are stabilized by additional resonance structure, predominantly generate E alkenes. Alternatively, Wittig reagents with simple alkyl groups primarily form Z alkenes.

Figure4

The yield of Wittig reactions is influenced by steric crowding around the carbonyl group. Ketones that are sterically more hindered give poor yields compared to aldehydes. A variation of the Wittig reaction is the Horner–Wadsworth–Emmons reaction that involves a phosphonate ester reagent producing the E alkene as the major product.

Figure5

Tags

Wittig Reaction Carbonyl Compounds Aldehydes Ketones Alkenes Phosphorus Ylides Wittig Reagent Nobel Prize In Chemistry Phosphonium Salt Strong Base Regioselective Stereoselectivity E Alkenes Z Alkenes Yield Steric Crowding

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter