Waiting
로그인 처리 중...

Trial ends in Request Full Access Tell Your Colleague About Jove

14.9: Relation Between Moment of a Force and Angular Momentum

TABLE OF
CONTENTS
JoVE Core
Mechanical Engineering

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

Education
Relation Between Moment of a Force and Angular Momentum
 
TRANSCRIPT

14.9: Relation Between Moment of a Force and Angular Momentum

In the realm of spinning tops, the application of force at a distance from the center produces torque, a pivotal factor that alters the angular momentum of the top, thereby inducing its rotation. The concept of moment, akin to linear force in rotation, quantifies how a force acting upon an object initiates rotational motion. Angular momentum serves as the rotational counterpart to linear momentum, representing an object's inherent tendency to persist in its rotational state.

The temporal change in angular momentum, when expressed as a derivative, yields an equation where the initial term is null, and the subsequent term correlates with the net force acting on the particle. A comparison of this expression with the moment of force equation establishes a crucial link between angular momentum and the moment of force, reflecting a rotational analog of Newton's second law.

This fundamental equation is universally applicable to both systems of particles and rigid bodies. Within a system of particles, the cumulative angular momentum arises from the individual contributions of each particle. In essence, this conceptual framework extends the principles of Newtonian dynamics to rotational motion, encapsulating the interplay between force, torque, and angular momentum in the dynamic world of rotating objects.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter