Waiting
로그인 처리 중...

Trial ends in Request Full Access Tell Your Colleague About Jove

16.2: Inertia Tensor

TABLE OF
CONTENTS
JoVE Core
Mechanical Engineering

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.

Education
Inertia Tensor
 
TRANSCRIPT

16.2: Inertia Tensor

The concept of the inertia tensor is employed to depict the mass distribution and rotational inertia of a solid or rigid object. This tensor is expressed through a three-by-three matrix. Each component within this matrix corresponds to varying moments of inertia about specific axes.

The diagonal components of the inertia tensor matrix represent the moments of inertia concerning the principal axes of the object. These primary axes are defined as the axes where the object experiences the least resistance to rotation. If there is a smaller moment of inertia value along a certain principal axis, it indicates that the object can rotate more freely around that specific axis. Conversely, the off-diagonal components in the inertia tensor matrix symbolize the product of inertia. This essentially illustrates the interplay between different axes.

It is possible to make the off-diagonal elements of the inertia tensor zero by choosing a unique orientation of the reference axes. This action results in the tensor being diagonalized. The modified tensor then only includes diagonal terms, and these are identified as the principal moments of inertia for the object. These are calculated in relation to the principal axes of inertia.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter