Summary

一个算法的开发与高位脊髓损伤使用遥测装置进行自主神经异常反射的动物的综合研究

Published: July 29, 2016
doi:

Summary

The catheter of a telemetry device is implanted into the abdominal aorta in order to continuously collect beat-by-beat hemodynamic data from animals pre and post-high thoracic spinal cord transection. A novel JAVA software was employed to analyze hemodynamic parameters as well as frequency and intensity of spontaneous episodes of autonomic dysreflexia.

Abstract

Spinal cord injury (SCI) is a debilitating neurological condition characterized by somatic and autonomic dysfunctions. In particular, SCI above the mid-thoracic level can lead to a potentially life-threatening hypertensive condition called autonomic dysreflexia (AD) that is often triggered by noxious or non-noxious somatic or visceral stimuli below the level of injury. One of the most common triggers of AD is the distension of pelvic viscera, such as during bladder and bowel distension or evacuation. This protocol presents a novel pattern recognition algorithm developed for a JAVA platform software to study the fluctuations of cardiovascular parameters as well as the number, severity and duration of spontaneously occurring AD events. The software is able to apply a pattern recognition algorithm on hemodynamic data such as systolic blood pressure (SBP) and heart rate (HR) extracted from telemetry recordings of conscious and unrestrained animals before and after thoracic (T3) complete transection. With this software, hemodynamic parameters and episodes of AD are able to be detected and analyzed with minimal experimenter bias.

Introduction

自主神经异常反射(AD)是在颈部或高胸节急性或慢性脊髓损伤(SCI)后的个体威胁生命的紧急情况和通常的特征在于持续性高血压和心动过缓1情节。 AD主要是由脊髓下行通道,通常要控制交感神经活性和血管张力1-4脊髓交感神经节前神经元提供了从脊髓上输入中心的破坏引起的。高达300毫米汞柱的AD发作的特征在于收缩压(SBP)尖峰并且如果不治疗会导致癫痫发作,颅内出血,心肌梗塞,甚至死亡5-8。各种有害和非伤害性刺激的作为AD的触发,包括肠和膀胱膨胀,痉挛,压疮,膀胱导尿或医源性程序9-12。

AD的RESP的时间发展ONSE以SCI已经在人类9和动物模型13,14了研究。通常这些研究已经使用了“诱导AD”的方法( 尿流动力学,在人类或动物的结直肠扩张阴茎vibrostimulations)确定AD的时间发展。这种方法由于需要在分离的时间点重复评估可能排除AD的时间发展的一个精确确定的限制。在人类中使用的24小时的血压监测器在预定的时间间隔进行串行血压测量。这种技术最近已用于监测慢性SCI自发产生的AD。在动物模型中,固态压力传感器正在越来越多地用于长期监控打逐击败动脉血压。近日,Rabchesvky 。 (2012),开发出了提取平均动脉压的二分之一的平均值的算法(MAP)的一个对一个移动平均阈值15相比Ð。基于MAP的峰是10毫米汞柱或更大的阈值以上的同时用10 BPM或更大的HR一滴自发公元事件进行了表征。

在这里,有一个建于公元检测算法一种新型的JAVA软件呈现。这个算法通过检测动脉血压(ABP)和心脏速率(HR),该指示一个自然发生​​的AD事件的预先确定的图案。用户能够手动调整所有输入变量的软件,使得'检测算法“可以容易地定制,以所关注的具体参数。该软件还能够二分法ABP和HR成一个给定的时期,使得血流动力学参数的昼夜节律可以分析16。在本手稿,详细说明中给出,用于植入遥测设备和进行SCI手术手术技术。前还提供了相对于所述的AD检测软件的后处理能力和功能如何心血管amples被改变后的SCI。为了比较的目的,从被称为结直肠扩张诱导的AD的方法得到的方法和结果(CRD)也示出。

Protocol

雄性Wistar(HSD:WI的Wistar)大鼠7周龄,体重300-350克本实验中使用。所有大鼠维持12小时的光/暗周期,并获得标准的实验室大鼠饲料和水随意。所有实验程序符合由加拿大议会关于动物饲养建立先导,以护理和使用实验动物,并授予伦理委员会批准由英国哥伦比亚大学。手术和动物护理是根据我们实验室的标准程序(拉姆齐等,2010)17进行。 1.动物的制备:外科?…

Representative Results

使用遥测技术,动脉血压是在1000赫兹的频率连续24小时取样。使用LabChart动脉血压(ABP)的说明性记录示于图1B。样品ABP被插入降主动脉固态压力传感器监测。小说JAVA平台AD检测软件能够提取相关收缩压(毫米汞柱)峰( 图1C)。我们还可以提取来自相邻SBP峰( 图1D)之间的时间间隔的心率(BPM)。 SBP和HR通过在1000赫兹采样节拍ABP从节拍…

Discussion

该协议描述了详细的实施这将与一个遥测装置相结合,在SCI-动物( 图1B)ABP的长期深入分析的新的JAVA平台的AD检测软件。这是第一个软件,它允许为ABP图案表征,因为它们偶尔发生在一天的持续时间,以检测自发广告事件。充分表征T3 SCI动物模型可以说明检测自发AD的频率,升压反应和持续的软件功能的能力。随着检测自发广告事件,该软件可以分析ABP振荡和辨别血流动力学参数的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究如果资助的健康研究的加拿大研究所和心脏及中风BC和育空地区的基础。我们要感谢Rayshad Gopaul先生和谢利McErlane博士在动物保健技术支持和专业知识。

Materials

11 Male Wistar Rats -Hsd-WI (250-300g) Envigo (formerly Harlan Laboratories)  141
Lab Chart (PowerLab® Data Acquisition System) AD Instruments 
Pressure Telemeter  Millar Inc. RP-TRM54P
Configurator Millar Inc. TR190
SmartPad Millar Inc. TR180
Isoflurane (Aerrane) Baxter Corp. DIN: 02225875
Enrofloxacin (Baytril) Bayer Healthcare DIN: 02169428
5-0 Silk Sutures Ethicon S182
4-0 Vicryl Subcuticular Ethicon J496G
Buprenorphine (Temgesic) Reckitt Benckiser DIN: 0281250
Bupivicaine Hydrochloride (Marcaine 0.5%) Hospira Healthcare Corp.  DIN: 02305909
Ketoprofen (Anafen) Merial DIN: 02150999
Ketamine Hydrochloride (Vetalar) Bioniche DIN: 01989529
Dexmedetomidine Hydrochloride (Domitor) Pfizer DIN: 02333929
Lactated Ringer's Solution  Braun Medical Inc. DIN: 01931636
Gelfoam #12 Pharmacia & Upjohn Company 03603-14-1
Microscissors Fine Science Tools 15003-008
Iris Spatulae Fine Science Tools 10094-13
10 French 35cm Foley Catheter  Coloplast  AA6110
Dietgel®  Clear H2O, Westbrook, ME 76A
LabDiet Rodent Diet 5001 Purina Mills (PMI®) 5001
Chlorhexadine (Hibitane) Wyeth Animal Health, Guelph, Ontario DIN 00245097
Atipamezole Hydrochloride(Antisedan) Orion Pharma DIN: 02237744

References

  1. Krassioukov, A., Claydon, V. E. The clinical problems in cardiovascular control following spinal cord injury: an overview. Progress in brain research. 152, 223-229 (2006).
  2. Krassioukov, A. Autonomic function following cervical spinal cord injury. Respiratory physiology & neurobiology. 169, 157-164 (2009).
  3. Teasell, R. W., Arnold, J. M. O., Krassioukov, A., Delaney, G. A. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Archives of physical medicine and rehabilitation. 81, 506-516 (2000).
  4. Alan, N., et al. Recurrent autonomic dysreflexia exacerbates vascular dysfunction after spinal cord injury. The Spine Journal. 10, 1108-1117 (2010).
  5. Eltorai, I., Kim, R., Vulpe, M., Kasravi, H., Ho, W. Fatal cerebral hemorrhage due to autonomic dysreflexia in a tetraplegic patient: case report and review. Spinal Cord. 30, 355-360 (1992).
  6. Pan, S. -. L., et al. Intracerebral hemorrhage secondary to autonomic dysreflexia in a young person with incomplete C8 tetraplegia: A case report. Archives of physical medicine and rehabilitation. 86, 591-593 (2005).
  7. Ho, C., Krassioukov, A. Autonomic dysreflexia and myocardial ischemia. Spinal cord. 48, 714-715 (2010).
  8. Wan, D., Krassioukov, A. V. Life-threatening outcomes associated with autonomic dysreflexia: A clinical review. The journal of spinal cord medicine. 37, 2-10 (2014).
  9. Mathias, C. J., Frankel, H. Cardiovascular control in spinal man. Annual review of physiology. 50, 577-592 (1988).
  10. Hubli, M., Krassioukov, A. V. Ambulatory Blood Pressure Monitoring in Spinal Cord Injury: Clinical Practicability. Journal of neurotrauma. 31, 789-797 (2014).
  11. Liu, N., Fougere, R., Zhou, M., Nigro, M., Krassioukov, A. Autonomic dysreflexia severity during urodynamics and cystoscopy in individuals with spinal cord injury. Spinal cord. 51, 863-867 (2013).
  12. Phillips, A. A., Elliott, S. L., Zheng, M. M., Krassioukov, A. V. Selective alpha adrenergic antagonist reduces severity of transient hypertension during sexual stimulation after spinal cord injury. Journal of neurotrauma. , (2014).
  13. Maiorov, D. N., Fehlings, M. G., Weaver, L. C., Krassioukov, A. V. Relationship between severity of spinal cord injury and abnormalities in neurogenic cardiovascular control in conscious rats. Journal of neurotrauma. 15, 365-374 (1998).
  14. Maiorov, D. N., Weaver, L. C., Krassioukov, A. V. Relationship between sympathetic activity and arterial pressure in conscious spinal rats. American Journal of Physiology-Heart and Circulatory Physiology. 41, H625 (1997).
  15. Rabchevsky, A. G., et al. Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury. Frontiers in physiology. 3, (2012).
  16. Mayorov, D. N., Adams, M. A., Krassioukov, A. V. Telemetric blood pressure monitoring in conscious rats before and after compression injury of spinal cord. Journal of neurotrauma. 18, 727-736 (2001).
  17. Ramsey, J. B., et al. Care of rats with complete high-thoracic spinal cord injury. Journal of neurotrauma. 27, 1709-1722 (2010).
  18. Krassioukov, A. V., Furlan, J. C., Fehlings, M. G. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity. Journal of neurotrauma. 20, 707-716 (2003).
  19. Krogh, K., Mosdal, C., Laurberg, S. Gastrointestinal and segmental colonic transit times in patients with acute and chronic spinal cord lesions. Spinal cord. 38, 615-621 (2000).
  20. Krassioukov, A. V., Johns, D. G., Schramm, L. P. Sensitivity of sympathetically correlated spinal interneurons, renal sympathetic nerve activity, and arterial pressure to somatic and visceral stimuli after chronic spinal injury. Journal of neurotrauma. 19, 1521-1529 (2002).
  21. Braga, V. A., Prabhakar, N. R. Refinement of telemetry for measuring blood pressure in conscious rats. Journal of the American Association for Laboratory Animal Science: JAALAS. 48, 268 (2009).
  22. Whitesall, S. E., Hoff, J. B., Vollmer, A. P., D’Alecy, L. G. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods. American Journal of Physiology-Heart and Circulatory Physiology. 286, H2408-H2415 (2004).

Play Video

Cite This Article
Popok, D., West, C., Frias, B., Krassioukov, A. V. Development of an Algorithm to Perform a Comprehensive Study of Autonomic Dysreflexia in Animals with High Spinal Cord Injury Using a Telemetry Device. J. Vis. Exp. (113), e52809, doi:10.3791/52809 (2016).

View Video