Summary

对称Bihemispheric死后的大脑切割学习健康和病理条件大脑在人

Published: December 18, 2016
doi:

Summary

有组织的脑切削程序是必要的,以与确定的神经病理学诊断特定神经精神现象相关。脑屑基于各种临床 – 学术突发不同的方式执行。本协议描述的对称bihemispheric脑部切割程序,调查人的大脑半球病变差异,以最大限度地提高当前和未来的生物分子/神经影像学技术。

Abstract

Neuropathologists,有时感到生成在人脑尸检要求的患者描述复杂的神经精神现象,明确的诊断所需要的知识量吓倒。尽管生物医学影像学和的进步已经彻底改变了神经精神领域,他们也产生了误导性的想法,大脑解剖只有一个确定的值。这个假想法在尸检速率的急剧减少,因此,降低的可能性进行更详细的和广泛的神经病理调查,这是必要的,以理解众多正常和病理方面未知的人脑。观察神经精神现象及其可能的相关因素neurohistological相应的本地化/特性之间的相关传统推理方法继续有一个不可否认的价值。在neuropsychi的上下文atric疾病,传统的临床方法仍是最好的可能的方法(通常是唯一可用的),以唯一的神经精神功能链接到其相应的神经病理学基材,因为它在脑组织中的直接身体评估特别依赖。死后大脑的评估是基于大脑切割跨越不同的神经病理学变化中心的程序。脑屑基于存在于每个机构的各种临床和学术突发相对广泛和系统的方式进行。更解剖学包容性和对称双向大脑半球切割的方法至少应该用于研究目的的人类神经病理学连贯调查,深入,与人脑( 半球专业化和偏侧特定的特殊性正常和病理条件功能)。这种方法将提供更全面的科尔神经病理良好的特点适用于当前和未来的生物科技和神经成像技术的大脑ction。我们描述了在人类大脑半球病变的差异进行调查并与目前使用的以及未来的生物分子/神经影像学技术的对称双大脑半球切割程序。

Introduction

Neuropathologists有科学的特权,智力的荣誉和诊断义务评估人类大脑。几十年来,脑部疾病和重大努力的详细的临床描述,以个体化在人死后的大脑其可能neurohistological相关因素已经开展。从历史上看,这些努力所代表的最有成效的方式由医学科学和神经学尤其是在当今时代先进。由于以前的杰出neuropathologists和他们的奉献精神,决心,奖学金,惊人的能力,以正常和异常的脑组织(通常使用非常残留的工具)之间的区别,我们现在可以研究和目标疾病,如阿尔茨海默Perusini病(不公平只被称为阿尔茨海默氏症病; APD / AD)1,帕金森病(PD)2,克雅氏病(CJD)3,娄格里克病/肌萎缩侧索SclerosiS(ALS)4,和关岛病5,仅举几例。

神经影像学的先进的技术,如高清晰计算机断层扫描( 多层螺旋CT扫描,CT血管造影),功能和形态磁共振成像( 功能磁共振成像,弥散核磁共振成像,示踪-MRI ),正电子发射断层扫描(PET),基于超声波的成像,等人,都肯定是我们修改关于如何诊断和治疗神经和精神病患者一般做法。尽管如此,虽然神经成像技术能够可视化的人的大脑时活着,他们不提供的机会,在发生的时刻,直接分析细胞,如神经元的高度复杂的细胞和亚细胞结构的;或可视化,标记和量化特定类型的细胞内病变;或精确显示他们的神经解剖学和次区域定位在circuital和分circuital解剖层次。例如,神经成像技术不能在嗅皮层识别或定位在黑质(SN),与帕金森病相关的一个共同的病理学特征,或神经原纤维缠结(NFT)的色素神经元Lewy小体(LB),AD的经典特征和其他脑病变。神经病理学的调查与先进的数码显微镜相结合仍然是不可替代的详细的临床相关性,因此,为明确诊断。

由于人脑的特有anatomo功能特性,特别是它的解剖定位(即,颅骨,天然保护系统,该系统不允许内容的直接检查内部),引入体内神经成像技术非常有帮助临床医生和调查人员发现最初的解答一些这种复杂组织的奥秘。然而,没有临床或neuroimagiNG的方法,可替换的独特的机会,脑组织尸检过程中直接分析。仅有组织收集,保存,和人脑的分类可允许神经元和非神经元细胞,亚细胞成分,细胞内和细胞外的病理病变直接与系统的调查,而大脑内的任何类型的异常进行确认,修改,或重新定义临床诊断和发现新的临床相关性。之一有关的大脑尸检评估表观限制一直是事实,这过程是一个剖方法论。总会有一个持续的神经病理过程(临床表现或不)和机会,如果有的话,在neurohistological级别来定义它之间的延迟。这主要是由于人的大脑没有能力再生本身。它目前还无法获得的脑组织在体内 ,而无需创建PErmanent伤害。因此,是不可能在纵向和神经病理学评估相同的大脑/人。然而,标准化的大脑银行程序和脑捐赠广大市民日益认识到可以极大地持续增加收集和分析案件的数量有助于脑尸检时序问题的解决。以这种方式,可以得到死后的大脑的更充分的数字,以定义病理起源和进展的恒定模式与每个人脑疾病相关的脑损伤的每个特定类型。这将需要从受任何神经精神障碍的患者在所有年龄捐献和尽可能多的大脑尽可能收集,以及来自健康对照受试者。一个可能的方法可以从一般和专门的医疗中心作为一个标准的程序中收集尽可能多的尸检大脑越好。需要对脑捐赠最近已表示那些谁研究老年痴呆症和正常老化6。相同的必要性应由神经字段作为整体来表示。

用于上述和其他原因,正在进行的脑切割程序的更新是必要的。此外,脑切割程序应普遍在不同的神经病理学的研究中心标准化在世界各地,也考虑帐户的可能性聘请当前和未来的生物技术,以更好地调查,并希望能以明确理解的原因和脑部疾病的机制人类。

在这里,主要用于研究目的,我们描述了死后的大脑在人类切对称方法。此过程提出收集比正常完成,并从两个大脑和小脑半球更多脑区。对称双大脑半球切割过程将符合我们当前的人类知识好得多神经解剖学,神经化学,神经生理学和。这种方法还允许的可能性神经病理学分析人类大脑的独特功能,诸如半球专业化和偏侧是与较高的认知和非认知功能一般或专门存在于我们的物种相关联。是否有半球专业化/偏侧和特定类型的脑病变之间的具体发病的关系,或一种特殊的神经精神病发病事件是否是最初,普遍地,或只与特定的半球关联和功能不是目前公知的。通过描述这种大脑对称切割程序,我们的目标是提出人类大脑解剖的更新方法,可以帮助更好地了解一个高度专业化的正常组织和病理条件下,大脑。该方法还考虑到,只存在于人类的那些吗啉官能半球方面。

Protocol

涉及死后人体组织程序已被机构审查委员会审查,并在45 CFR(联邦法规)豁免。 注:本协议描述了完成在人类神经病理学研究死后的大脑评估对称bihemispheric脑部切割程序。的装置,仪器,材料和必要执行人类大脑切割建筑材料的详细描述将被排除。对于脑解剖材料和用品在单研究者决定被选择并且是基于允许或在各研究机构批准尸检工具。集此过程所需的工具和材料最小的材料/设备表中描述。具体切割程…

Representative Results

协议长度花为单个对称bihemispheric固定脑切削过程中的时间估计为1小时(不包括花费建立解剖台,工具和切割表面的时间;标签; 等 )。为一个单一的对称双半球交替冻结和固定脑切割过程所需的时间估计需要2小时。它可以至少在4 – 6周获得明确的组织学诊断为单人脑/主题。后从头骨,组织固定的适当时期死后的大脑切除…

Discussion

这种脑切断方法可适于对每个神经病理学实验室的特定需求(例如,通过减少脑区域的数量,以评估每个半球),同时仍保留bihemispheric对称切割的步骤,其主要特征之一。此提出的协议可用于常规程序(研究型神经病理学中心)或只在必要时(具体临床取向研究)。它可以选择性地仅用于特定类型的调查( 即,免疫组织化学)或分子分析( ,基因组或蛋白质组分析)。从技术角…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank the thousands of brain donors, patients, families, and neuroscientists around the world who, during the last two centuries and through their generous gifts and intellectual efforts, helped to discover how the human brain works, to understand devastating brain diseases, and to develop treatments thereof. We particularly thank Mrs. Cecilia V. Feltis for editing and reviewing this manuscript.

Materials

Copy of signed informed consent allowing autopsy and brain donation for research use.
Detailed clinical history of the subject which should include a detailed description of any neurologic and psychiatric symptoms and signs.
Medical or not-medical video-recordings when available (especially useful in movement disorders field). Next-of-kin’s consent required.
Neuroimaging, neurophysiology, neuropsychiatric and assessment or clinicometric scales.
Genetic and family history data. Genetic reports review, if neurogenetic diseases were diagnosed.
Histology Container ELECTRON MICROSCOPY SCIENCES 64233-24
Histology Cassettes VWR 18000-142 (orange)
Histology Cassettes VWR 18000-132 (navy)
Knife Handles and Disposable Blades ELECTRON MICROSCOPY SCIENCES 62560-04
Long Blades ELECTRON MICROSCOPY SCIENCES 62561-20
Disposable Blade Knife Handles ELECTRON MICROSCOPY SCIENCES 72040-08
Scalpel Blades ELECTRON MICROSCOPY SCIENCES 72049-22
Accu-Punch 2 mm ELECTRON MICROSCOPY SCIENCES 69038-02 
Polystyrene Containers – Sterile ELECTRON MICROSCOPY SCIENCES 64240-12
Dissecting Board ELECTRON MICROSCOPY SCIENCES 63307-30
Formalin solution, neutral buffered, 10% Sigma-Aldrich HT501128 SIGMA
Hematoxylin Solution, Gill No. 2 Sigma-Aldrich GHS280 SIGMA
Eosin Y solution, aqueous Sigma-Aldrich HT1102128 SIGMA
anti-beta-amyloid Covance, Princeton, NJ SIG-39220 1  500
anti-tau Thermo Fisher Scientific MN1020 1  500
anti-alpha-synuclein Abcam ab27766 1  500
anti-phospho-TDP43 Cosmo Bio Co. TIP-PTD-P02 1 2000
Digital Camera Any
Head Impulse Sealing machine  Grainger 5ZZ35

References

  1. Braun, B., Stadlober-Degwerth, M., Hajak, G., Klunemann, H. H. 100th anniversary of Perusini’s second case: patient RM and his kindred. Am. J. Alzheimers Dis. Other Demen. 25, 189-192 (2010).
  2. Jellinger, K. A. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord. 27, 8-30 (2012).
  3. Head, M. W. Human prion diseases: molecular, cellular and population biology. Neuropathology. 33, 221-236 (2013).
  4. Hirano, A. Neuropathology of ALS: an overview. Neurology. 47, S63-S66 (1996).
  5. Oyanagi, K., Wada, M. Neuropathology of parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam: an update. J. Neurol. 246 (Suppl 2), 19-27 (1999).
  6. Montine, T. J., et al. Recommendations of the Alzheimer’s disease-related dementias conference. Neurology. 83, 851-860 (2014).
  7. Yong-Hing, C. J., Obenaus, A., Stryker, R., Tong, K., Sarty, G. E. Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain. Magn Reson Med. 54, 324-332 (2005).
  8. Love, S., Perry, A., Ironside, I., Budka, H. . Greenfield’s Neuropathology. , (2015).
  9. Davis, R. L., Robertson, D. M. . Textbook of Neuropathology. , (1996).
  10. Dickson, D. W., et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 8 (12), 1150-1157 (2009).
  11. Nieuwenhuys, R., Voogd, J., van Huijzen, C. . The Human Central Nervous System: A Synopsis and Atlas. , (2008).
  12. Netter, F. H. . Atlas of Human Anatomy. , (2005).
  13. Brown, R. W. . Histologic Preparations: Common Problems and Their Solutions. , (2009).
  14. Durrenberger, P. F., et al. Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J. Neuropathol. Exp. Neurol. 69, 70-81 (2010).
  15. Hyman, B. T., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1-13 (2012).
  16. Gelb, D. J., Oliver, E., Gilman, S. Diagnostic criteria for Parkinson disease. Arch Neurol. 56, 33-39 (1999).
  17. McKeith, I. G., et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 65, 1863-1872 (2005).
  18. Cairns, N. J., et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 114, 5-22 (2007).
  19. Litvan, I., et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J. Neuropathol. Exp. Neurol. 55, 97-105 (1996).
  20. Gilman, S., et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 71, 670-676 (2008).
  21. McKee, A. C., et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 131, 75-86 (2016).
  22. Rahimi, J., Kovacs, G. G. Prevalence of mixed pathologies in the aging brain. Alzheimer’s Res Ther. 6, 82 (2014).
  23. Jellinger, K. A., Attems, J. Challenges of multimorbidity of the aging brain: a critical update. J. Neural. Transm. (Vienna). 122, 505-521 (2015).
  24. Crary, J. F., et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755-766 (2014).
  25. Kovacs, G. G., et al. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol. 131, 87-102 (2016).
  26. Nelson, P. T., et al. 34;New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS). J Neuropathol Exp Neurol. 75 (6), 82-98 (2016).
  27. Tomlinson, B. E., Blessed, G., Roth, M. Observations on the brains of non-demented old people. J. Neurol. Sci. 7, 331-356 (1968).
  28. Katzman, R., et al. Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23, 138-144 (1988).
  29. Crystal, H., et al. Clinicopathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology. 38, 1682-1687 (1988).
  30. Knopman, D. S., et al. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol. 62, 1087 (2003).
  31. Troncoso, J. C., et al. Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiol. Aging. 17, 365-371 (1996).
  32. Mirra, S. S., et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 41 (4), 479-486 (1991).
  33. Braak, H., Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82 (4), 239-259 (1991).
  34. Frings, L., et al. Asymmetries of amyloid-β burden and neuronal dysfunction are positively correlated in Alzheimer’s disease. Brain. 138 (Pt 10), 3089-3099 (2015).
  35. Leroy, F., et al. New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc. Natl. Acad. Sci. U S A. 112 (4), 1208-1213 (2015).
  36. Fink, M., et al. Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. Neuroimage. 45 (2), 598-605 (2009).
  37. Miller, A. K. H., Alston, R. L., Mountjoy, C. Q., Corsellis, J. A. N. Automated differential cell counting on a sector of the normal human hippocampus: the influence of age. Neuropathol. Appl. Neurobiol. 10, 123-142 (1984).
  38. Brettschneider, J., Del Tredici, K., Lee, V. M., Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16 (2), 109-120 (2015).
  39. Nolan, M., Troakes, C., King, A., Bodi, I., Al-Sarraj, S. Control tissue in brain banking: the importance of thorough neuropathological assessment. J. Neural. Transm. (Vienna). 12, (2015).
  40. Wilcock, G. K., Esiri, M. M. Asymmetry of pathology in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 50 (10), 1384-1386 (1987).
  41. Janota, I., Mountjoy, C. Q. Asymmetry of pathology in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 51 (7), 1011-1012 (1988).
  42. Stefanits, H., Budka, H., Kovacs, G. G. Asymmetry of neurodegenerative disease related pathologies: a cautionary note. Acta Neuropathol. 123 (3), 449-452 (2012).
  43. King, A., Bodi, I., Nolan, M., Troakes, C., Al-Sarraj, S. Assessment of the degree of asymmetry of pathological features in neurodegenerative diseases. What is the significance for brain banks?. J Neural Transm. (Vienna). 122 (10), 1499-1508 (2015).
  44. Schmitz, C., Hof, P. R. Design-based stereology in neuroscience. 신경과학. 130, 813-831 (2005).
  45. Kristiansen, S. L., Nyengaard, J. R. Digital stereology in neuropathology. APMIS. 120, 327-340 (2012).
  46. Erskine, D., Khundakar, A. A. Stereological approaches to dementia research using human brain tissue. J Chem Neuroanat. , (2016).
  47. Lees, A. J. Unresolved issues relating to the shaking palsy on the celebration of James Parkinson’s 250th birthday. Mov. Disord. 22 (Suppl 17), S327-S334 (2007).
  48. Iacono, D., et al. Parkinson disease and incidental Lewy body disease: Just a question of time?. Neurology. 85, 1670-1679 (2015).
  49. Geuna, S., Herrera-Rincon, C. Update on stereology for light microscopy. Cell Tissue Res. 360 (1), 5-12 (2015).
  50. Drummond, E. S., Nayak, S., Ueberheide, B., Wisniewski, T. Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci. Rep. 5, 15456 (2015).
  51. Brickell, K. L., et al. Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 78 (10), 1050-1055 (2007).
  52. Xiromerisiou, G., et al. Identical twins with Leucine rich repeat kinase type 2 mutations discordant for Parkinson’s disease. Mov. Disord. 27 (10), 1323 (2012).
  53. Iacono, D., et al. Neuropathologic assessment of dementia markers in identical and fraternal twins. Brain Pathol. 24 (4), 317-333 (2014).
  54. Iacono, D., et al. Same Ages, Same Genes: Same Brains, Same Pathologies?: Dementia Timings, Co-Occurring Brain Pathologies ApoE Genotypes in Identical and Fraternal Age-matched Twins at Autopsy. Alzheimer Dis. Assoc. Disord. , (2015).
  55. Rentería, M. E. Cerebral asymmetry: a quantitative, multifactorial, and plastic brain phenotype. Twin Res. Hum. Genet. 15 (3), 401-413 (2012).
  56. Bishop, D. V. Cerebral asymmetry and language development: cause, correlate, or consequence?. Science. 340 (6138), (2013).
  57. Mendez, M. F., et al. Observation of social behavior in frontotemporal dementia. Am. J. Alzheimers Dis. Other Demen. 29 (3), 215-221 (2014).

Play Video

Cite This Article
Iacono, D., Geraci-Erck, M., Peng, H., Bouffard, J. P. Symmetric Bihemispheric Postmortem Brain Cutting to Study Healthy and Pathological Brain Conditions in Humans. J. Vis. Exp. (118), e54602, doi:10.3791/54602 (2016).

View Video