Back to chapter

8.4:

Ionisatie-energie

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Ionization Energy

Languages

Share

Het chemische gedrag van atomen en ionen wordt sterk beïnvloed door hoe gemakkelijk of moeilijk het is om hun elektronen te verwijderen, vooral de buitenste elektronen die deelnemen aan chemische bindingsformaties. De energie die nodig is om een elektron uit een gasvormig atoom in zijn grondtoestand te verwijderen, wordt de eerste ionisatie-energie genoemd en wordt gegeven in kilojoules per mol. De energie die nodig is om het volgende elektron te verwijderen, wordt de tweede ionisatie-energie genoemd, enzovoort.Als we een kolom naar beneden gaan, nemen de ionisatie-energieën af. Bedenk dat het hoogste hoofdkwantumaantal valentie-elektronen naar beneden in de kolom toeneemt, wat leidt tot grotere atomaire afmetingen. Dus hoe verder de buitenste elektronen zijn, hoe gemakkelijker ze te verwijderen zijn.Voor elementen uit de hoofdgroep neemt de ionisatie-energie toe gedurende de periode. De reden ligt in het toenemende atoomnummer, waarbij valentie-elektronen een hogere effectieve nucleaire lading ervaren, waardoor het verwijderen van de buitenste elektronen moeilijker wordt. Dit verklaart waarom chloor een hogere ionisatie-energie heeft dan bijvoorbeeld natrium.Over het algemeen is ionisatie-energie een minimum voor een alkalimetaal en stijgt tot een piek bij elk edelgas. Overgangsmetalen vertonen een kleine toename van de ionisatie-energie gedurende de periode, en de f-blokelementen vertonen een nog kleinere verandering. Maar er zijn enkele uitzonderingen om te overwegen.Borium heeft een kleinere ionisatie-energie dan beryllium, ook al staat het verder naar rechts op het periodiek systeem. Beryllium heeft 2s-elektronen met een lagere energie, terwijl boor een 2p-elektron met hogere energie heeft, waardoor de verwijdering ervan energetisch gunstiger is. Een andere uitzondering is zuurstof, dat een lagere eerste ionisatie-energie heeft dan stikstof.In vergelijking met stikstof heeft zuurstof vier p-elektronen, en het verwijderen van één elektron elimineert de elektronen-elektronen-afstoting. Er is dus minder energie nodig voor de ionisatie. Deze uitzonderingen worden ook in volgende periodes in acht genomen.Het verwijderen van elektronen uit kationen is moeilijker dan uit neutrale atomen. Over het algemeen nemen de opeenvolgende ionisatie-energieën toe voor elementen. Denk aan kalium.De tweede ionisatie-energie is aanzienlijk hoger, omdat het de verwijdering van een kernelektron uit een ion met een edelgasconfiguratie inhoudt. Evenzo is er voor calcium een sterke toename van de tweede naar de derde ionisatie-energie als een kernelektron wordt verwijderd uit een kation met een edelgasconfiguratie.

8.4:

Ionisatie-energie

The amount of energy required to remove the most loosely bound electron from a gaseous atom in its ground state is called its first ionization energy (IE1). The first ionization energy for an element, X, is the energy required to form a cation with 1+ charge:

Eq1

The energy required to remove the second most loosely bound electron is called the second ionization energy (IE2).

Eq2

The energy required to remove the third electron is the third ionization energy, and so on. Energy is always required to remove electrons from atoms or ions, so ionization processes are endothermic and IE values are always positive. For larger atoms, the most loosely bound electron is located farther from the nucleus and so is easier to remove. Thus, as size (atomic radius) increases, the ionization energy should decrease. 

Within a period, the IE1 generally increases with increasing Z. Down a group, the IE1 value generally decreases with increasing Z. There are some systematic deviations from this trend, however. Note that the ionization energy of boron (atomic number 5) is less than that of beryllium (atomic number 4) even though the nuclear charge of boron is greater by one proton. This can be explained because the energy of the subshells increases as l increases, due to penetration and shielding. Within any one shell, the s electrons are lower in energy than the p electrons. This means that an s electron is harder to remove from an atom than a p electron in the same shell. The electron removed during the ionization of beryllium ([He]2s2) is an s electron, whereas the electron removed during the ionization of boron ([He]2s22p1) is a p electron; this results in lower first ionization energy for boron, even though its nuclear charge is greater by one proton. Thus, we see a small deviation from the predicted trend occurring each time a new subshell begins.

Another deviation occurs as orbitals become more than one-half filled. The first ionization energy for oxygen is slightly less than that for nitrogen, despite the trend in increasing IE1 values across a period. For oxygen, removing one electron will eliminate the electron-electron repulsion caused by pairing the electrons in the 2p orbital and will result in a half-filled orbital (which is energetically favorable). Analogous changes occur in succeeding periods.

Removing an electron from a cation is more difficult than removing an electron from a neutral atom because of the greater electrostatic attraction to the cation. Likewise, removing an electron from a cation with a higher positive charge is more difficult than removing an electron from an ion with a lower charge. Thus, successive ionization energies for one element always increase. As seen in Table 1, there is a large increase in the ionization energies for each element. This jump corresponds to the removal of the core electrons, which are harder to remove than the valence electrons. For example, Sc and Ga both have three valence electrons, so the rapid increase in ionization energy occurs after the third ionization.

Table 1: Successive Ionization Energies for Selected Elements (kJ/mol)

Element IE1 IE2 IE3 IE4 IE5 IE6 IE7
K 418.8 3051.8 4419.6 5876.9 7975.5 9590.6 11343
Ca 589.8 1145.4 4912.4 6490.6 8153.0 10495.7 12272.9
Sc 633.1 1235.0 2388.7 7090.6 8842.9 10679.0 13315.0
Ga 578.8 1979.4 2964.6 6180 8298.7 10873.9 13594.8
Ge 762.2 1537.5 3302.1 4410.6 9021.4 Not available Not available
As 944.5 1793.6 2735.5 4836.8 6042.9 12311.5 Not available

This text is adapted from OpenStax Chemistry 2e, Section 6.5: Periodic Variations in Element Properties.