Back to chapter

13.2:

מדידת קצבי תגובה

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Measuring Reaction Rates

Languages

Share

ניתן ללמוד קצב של תגובה על ידי קביעת השינוי בריכוזים של מגיבים או תוצרים כפונקציה של זמן. שינויים בריכוז ניתן למדוד על ידי טכניקות ניסיוניות כמו מדידת קיטוב האור, ספקטרוסקופיה או מדידות לחץ. מדידת קיטוב האור עושה שימוש באור מקוטב מישור עם שדה חשמלי המכוון לאורך מישור אחד בלבד.היא מודדת את היכולת של תרכובות לסובב אור מקוטב, שתלויה במבנה המולקולרי של התרכובת הנחקרת. חשבו על ההידרוליזה של סוכרוז, שיוצרת גלוקוז ופרוקטוז. מד קיטוב האור(פולרימטר)משמש למדידת זווית הסיבוב של אור מקוטב מישור דרך תמיסת הסוכרוז המגיבה.סוכרוז גורם לסיבוב עם כיוון השעון, ואילו גלוקוז ופרוקטוז מניעים סיבוב נגד כיוון השעון. על ידי מדידת הזווית של סיבוב האור במרווחי זמן מוגדרים, נינתן לחשב את הריכוזים היחסיים של סוכרוז, גלוקוז או פרוקטוז ולקבוע את קצב התגובה. קצבי תגובה יכולים גם להימדד באמצעות שיטות ספקטרופוטומטריות, תוך ניצול היכולת של מגיבים או התוצרים לספוג אור באורכי גל יחודיים.ככל שהריכוז של החומר הרלוונטי גבוה יותר, כך ספיגת האור תהיה עוצמתית יותר. לדוגמה, גז מימן חסר צבע מגיב עם אדי יוד סגולים ליצירת יוד מימן חסר צבע. אדי יוד סופגים אור באזור הצהוב-ירוק ומחזירים אור סגול.במהלך התגובה, ספקטרופוטומטר מודד את כמות האור הנספג על ידי הדוגמא ומנתח את האור המועבר. כך, ככל שהתגובה מתקדמת, הירידה בריכוז אדי יוד נצפית על ידי הירידה של ספיגת האור הצהוב-ירוק. בעזרת חוק בר-למברט, ניתן לחשב את עוצמת האור הנספגת בנקודות זמן שונות ולקשר אותה לשינויים בריכוז.לחלופין, אם אחד מהמגיבים או התוצרים הם גז, משתמשים במדידות לחץ לקביעת קצב התגובה על ידי מעקב אחר שינויי לחץ. לדוגמה, במהלך פירוק מי חמצן, קצב התגובה נלמד באמצעות מנומטר המתעד את הלחץ של גז החמצן המשתחרר. ככל שהתגובה מתקדמת ועוד גז חמצן מתפתח, הלחץ עולה.באמצעות משוואת הגזים האידיאלים, ערכי לחץ המתועדים בנקודות זמן שונות מומרים לריכוזים. שינוי הריכוז כפונקציה של זמן משמש לקביעת קצב התגובה. לתגובות ממושכות, ניתן לקחת דוגמאות או דוגמיות מתערובת התגובה במרווחי זמן קבועים.לאחר מכן, הריכוזים היחסיים נמדדים באמצעות טכניקות מיכשוריות כמו כרומטוגרפיית גז, ספקטרומטריית מסה או טיטרציה, לחישוב קצבי תגובות.

13.2:

מדידת קצבי תגובה

Polarimetry finds application in chemical kinetics to measure the concentration and reaction kinetics of optically active substances during a chemical reaction. Optically active substances have the capability of rotating the plane of polarization of linearly polarized light passing through them—a feature called optical rotation. Optical activity is attributed to the molecular structure of substances. Normal monochromatic light is unpolarized and possesses oscillations of the electrical field in all possible planes perpendicular to the direction of its propagation. When an unpolarized light passes through a polarizer, a linearly polarized light maintaining oscillations in one plane emerges out.

A polarimeter instrument determines the polarization direction of the light or the rotation produced by an optically active substance. In a polarimeter, the plane-polarized light is introduced to a tube containing the reacting solution, and the reaction can be followed without disturbing the system. If the sample contains optically inactive substances, there will be no change in the orientation of the plane of the polarized light. The light will be visible in the same intensity on the analyzer screen, and the angle of rotation reading (ɑ) will read zero degrees.

However, the presence of optically active compounds in the reacting sample causes the rotation of the plane of the polarized light passing through. The light emerging out will be less bright. The axis of the analyzer device will have to be rotated in a clockwise (dextrorotatory) or counter-clockwise (levorotatory) direction to observe the maximum brightness. The direction in which the analyzer needs to be rotated depends on the nature of the compound present. The optical rotation measured is proportional to the concentration of the optically active substances present in the sample. By analyzing the angle of rotation measurements at different time points, the concentrations of the optically active compounds can be determined as a function of time.

Spectrometry

Optical experimental techniques like spectrometry are also frequently employed to monitor chemical reactions and secure quantitative information on reaction kinetics. Using spectrometry, the light of a specific wavelength is made to pass through a reacting sample. The molecules or compounds (either a reactant or product) within the sample may absorb some light while transmitting the remaining amount, which is measured by a detector. The quantity of light absorbed depends on the concentration of the compound or molecule of interest. For instance, the higher the concentration of a compound, the larger its absorbance. From the absorbance, the instrument will be able to determine the concentration of the compound of interest. In a reacting sample, the absorbance measured at periodic intervals computes the concentrations of the reactant or product as a function of time.

Pressure Measurements

For reactions involving gas-phase substances, the reaction kinetics is followed by quantifying the changes in the number of moles of gases as a function of the changes in pressure. The experimental settings of a gas-phase reaction can be connected to a manometer that could measure the pressure of either a gaseous reactant or product. As the reaction progresses, the pressure of the reactants decreases, and(or) the products' pressure increases. This can be measured by the manometer as a function of time. By employing the ideal gas law—the concentration of a gas is proportional to its partial pressure—the rate of a chemical reaction can be calculated.