Back to chapter

4.15:

Funzione delle proteine strutturali

JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
Structural Protein Function

Languages

Share

Le proteine strutturali sono una classe di proteine che supportano la forma e il movimento cellulare. Al di fuori della cellula, queste proteine sono presenti in parti strutturali del corpo, come ossa, cartilagine e pelle. Il collagene, la proteina più abbondante nei mammiferi, è una proteina strutturale che si trova in tutto il corpo e nella matrice extracellulare.Questa proteina si avvolge in una tripla elica che polimerizza in fibrille allungate, che ulteriormente che ulteriormente si assemblano in fibre più grandi. Tra le sue numerose funzioni strutturali, contribuisce alla forma cellulare e tissutale. Il citoscheletro è prevalentemente composto da proteine strutturali e forma la struttura di base di una cellula.Contiene tre tipi principali di filamenti:microfilamenti, filamenti intermedi e microtubuli. L’actina è una proteina strutturale che costituisce i microfilamenti;questa proteina auto polimerizza in filamenti e contribuisce alla forma, all’organizzazione, al movimento e alla divisione cellulare. i filamenti intermedi possono essere costituiti da diverse proteine a seconda del tipo cellulare.I filamenti intermedi di cheratina, ad esempio, si trovano in cellule epiteliali, mentre i filamenti intermedi periferici si trovano nei neuroni periferici. La funzione strutturale primaria di questi filamenti è rinforzare le cellule e organizzarle in tessuti. I microtubuli sono costituiti da una classe di proteine strutturali chiamate, tubuline.Le tubuline si assemblano per formare microtubuli che contribuiscono all’organizzazione del citoplasma, compresa la posizione delgli organelli. Le proteine strutturali sono necessarie per la salute di un organismo, e mutazioni nei geni che codificano per queste proteine possono provocare varie malattie, tra cui anomalie scheletriche e cardiovascolari.

4.15:

Funzione delle proteine strutturali

Structural proteins are a category of proteins responsible for functions ranging from cell shape and movement to providing support to major structures such as bones, cartilage, hair, and muscles. This group includes proteins such as collagen, actin, myosin, and keratin.

Collagen, the most abundant protein in mammals, is found throughout the body. In connective tissue, such as skin, ligaments, and tendons, it provides tensile strength and elasticity.  In bones and teeth, it mineralizes to form hard tissues and contributes to their load-bearing capacity. In addition to structural support, collagen can also interact with cell surface receptors and other intermediate molecules to regulate cellular processes, such as growth and migration, which involve changes in cell and tissue shape.

Structural proteins form the basic framework of the cell cytoskeleton.  The cytoskeleton is made up of three types of filaments, microfilaments, intermediate filaments, and microtubules, and each is composed of different structural proteins. The microfilament is formed when actin self-polymerizes into long repetitive structures. These actin filaments contribute to cell shape and organization; additionally, microfilaments can also contribute to cell movement and division, when it acts in conjunction with myosin. The composition of intermediate filaments varies based on cell type. There are around 70 different genes that code for various intermediate filaments. Intermediate filaments in epithelial cells contain keratin, peripheral neurons contain peripherin, and the sarcomere in muscle cells contains desmin. The primary structural function of these filaments is to reinforce cells and organize them into tissues. Microtubules are made up of structural proteins called tubulins. Tubulins self-assemble to form microtubules that contribute to the organization of the cytoplasm, including the location of the organelles.  Microtubules are also essential for mitosis and cell division.

As structural proteins are widespread, a mutation in a gene that codes for any of these proteins can have severe detrimental effects. For example, a mutation in a gene coding for collagen can result in a condition known as osteogenesis imperfecta, which is characterized by weak bones and deformities in connective tissues. Different mutations in a collagen gene can result in Alport syndrome, which is characterized by problems in organs such as kidneys, eyes, and ears.

Suggested Reading

  1. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology 4th edition. National Center for Biotechnology Information, Bookshelf.
  2. Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor perspectives in biology, 3(1), a004978.
  3. Dominguez, R., & Holmes, K. C. (2011). Actin structure and function. Annual review of biophysics, 40, 169-186.
  4. Downing, K. H., & Nogales, E. (1998). Tubulin and microtubule structure. Current opinion in cell biology, 10(1), 16-22.
  5. Geisler, F., & Leube, R. E. (2016). Epithelial Intermediate Filaments: Guardians against Microbial Infection?. Cells, 5(3), 29. doi:10.3390/cells5030029