Back to chapter

6.7:

DNA elicasi

JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
DNA Helicases

Languages

Share

Le elicasi coinvolte nella replicazione del DNA sono note come elicasi replicative;esse contengono sei subunità che circondano un poro centrale abbastanza grande da permettere il passaggio del DNA a singolo filamento. L’elicasi subisce un cambiamento conformazionale per potersi muovere lungo il DNA usando l’energia ottenuta attraverso l’idrolisi di ATP. Ciascuna delle sei subunità di elicasi ha un sito di legame ATP ad attività ATPase, ossia la capacità di convertire l’ATP ad ADP e fosfato inorganico.Quando l’elicasi scompone l’ATP, le subunità si muovono l’una rispetto all’altra, causando la traslocazione del DNA. Per iniziare lo svolgimento del DNA, l’elicasi si lega ad un singolo filamento del DNA, all’origine della replicazione, e scorre lungo il filamento selezionato del DNA. Una volta che l’elicasi disavvolge il DNA, le risultanti molecole di DNA separate a singolo filamento, possono formare anelli a forma di forcina per capelli mediante appaiamento intra-filamento, o DNA a doppio filamento mediante appaiamento tra i filamenti.Questi filamenti sono anche vulnerabili ad attacchi da parte di nucleasi, capaci di digerire il DNA. Per prevenire questo fenomeno, le proteine single-stranded DNA binding o SSB, si legano al DNA a filamento singolo in modo sequenziale, dove l’SSB in entrata si lega all’adiacente SSB esistente. Questo legame cooperativo della proteina SSB rafforza e protegge il filamento del DNA genitore, impedendo la formazione di anelli a forma di forcina per capelli o il riavvolgimento del DNA nella sua 01 38.880 00 01 41.100 struttura a doppio filamento.Le proteine SSB si attaccano strettamente alla catena dello zucchero-fosfato del DNA, e lasciano le basi azotate disponibili per il legame nucleotidico complementare, permettendo la formazione del filamento figlio.

6.7:

DNA elicasi

DNA unwinding enzyme helicases are a type of motor protein. Motor proteins can translocate along filaments or polymers using energy generated from ATP hydrolysis. Helicases are involved in all the important cellular processes where DNA unwinding is required, such as DNA replication, repair, recombination, and transcription. They are present in all living organisms, but vary in their structure, function, and mechanism of action. For example, in prokaryotes, DnaB helicase binds and translocates along the lagging strand template in the 5' to 3' direction. In eukaryotes, the minichromosome maintenance (MCM) protein complex is a DNA helicase that binds and translocates along the leading strand template in the 3' to 5' direction.

Helicases as Therapeutic Targets

Being an indispensable component of the DNA replication machinery, helicase is emerging as a new target for the development of drugs against bacterial and viral infections and for cancer treatment. Cancer cells are characterized by rapid proliferation, which demands a high DNA replication rate and a corresponding increase in the production of MCM helicase. Thus, inhibition or depletion of MCM helicase by the right drugs could suppress the rapid growth of cancer cells.

Single-strand DNA-binding (SSB) Proteins – Stabilizer and Protector of Single Stranded DNA (ssDNA)

For successful DNA replication, unwinding of double-stranded DNA must be accompanied by stabilization and protection of the separated single strands of the DNA. This crucial task is performed by single-strand DNA-binding (SSB) proteins. They bind to the DNA in a sequence-independent manner, which means that the nitrogenous bases of the DNA need not be present in a specific order for binding of SSB proteins to it. Binding of SSB proteins straightens single-stranded DNA (ssDNA) and makes it rigid. This is believed to enhance DNA polymerase's ability to correctly select bases, thereby increasing the fidelity of DNA replication.

The ever-growing threat of drug-resistant microorganisms demands development of antibiotics with new targets. Due to their involvement in DNA replication, recombination, and repair, SSB proteins are being investigated for this purpose.

Suggested Reading

  1. Tuteja, Narendra, and Renu Tuteja. "Prokaryotic and eukaryotic DNA helicases: essential molecular motor proteins for cellular machinery." European Journal of Biochemistry 271, no. 10 (2004): 1835-1848. https://febs.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1432-1033.2004.04093.x
  2. Seo, Yeon-Soo, and Young-Hoon Kang. "The human replicative helicase, the CMG complex, as a target for anti-cancer therapy." Frontiers in Molecular Biosciences 5 (2018): 26. https://www.frontiersin.org/articles/10.3389/fmolb.2018.00026/full