Summary

倒胶体晶体聚(乙二醇)脚手架制作:肝脏组织工程三维细胞培养平台

Published: August 27, 2016
doi:

Summary

This manuscript presents a detailed protocol for the fabrication of an emerging three-dimensional hepatocyte culture platform, the inverted colloidal crystal scaffold, and the concomitant techniques to assess hepatocyte behavior. The size-controllable pores, interconnectivity and ability to conjugate extracellular matrix proteins to the poly(ethylene glycol) (PEG) scaffold enhance Huh-7.5 cell performance.

Abstract

维持肝细胞功能的体外,用于测试异生素“的细胞毒性,研究病毒感染和开发针对肝脏的药物为目的的能力,需要在哪些小区得到适当的生物化学和机械线索的平台。最近肝组织工程系统已采用合成的或天然的水凝胶组成的三维(3D)支架,由于其高保水性和其提供由该细胞所需要的机械性刺激的能力。出现了在倒胶态晶体(ICC)的脚手架越来越大的兴趣,最近的发展,其允许高空间组织,同型和异型细胞相互作用,以及细胞外基质(ECM)的相互作用。在此,我们描述了一个协议使用聚(乙二醇)二丙烯酸酯(PEGDA),颗粒沥滤方法来制造IC卡支架。简要地说,一个晶格是由微颗粒制成,在这之后的预聚合物:R染料溶液加入,适当地聚合,然后颗粒被除去,或者浸出,使用有机溶剂( 如,四氢呋喃)。晶格结果与控制的孔尺寸和interconnectivities允许媒体更容易地达到电池的高度多孔支架的溶解。这种独特的结构允许所述细胞附着的能力来涂覆PEGDA IC卡支架与蛋白质还示出对电池性能有显着影响的孔之间以及容易的通信,和高的表面积。我们分析了支架的形态,以及肝癌细胞(的Huh-7.5)行为存活率方面和功能探索ICC结构和ECM涂料的效果。总体而言,本文提供了在组织工程中广泛应用,尤其是肝脏组织工程支架出现了详细的协议。

Introduction

肝脏是一个高度血管器官与多种功能,包括血液解毒,异生素的代谢,以及生产的血清蛋白。肝组织具有复杂的三维(3D)微结构,其包含多种细胞类型,胆管,正弦,和不同的生物基质的组成和不同的氧浓度的区域。鉴于这种精细结构中,它已经难于创建体外 1适当肝模型。然而,对于在体外模型官能托管人肝细胞用于测试药物毒性2平台和学习与肝3相关联的疾病的需求上升。

当前肝组织工程平台已经通过分离,或者集中于几个,肝脏的参数,单元4即共培养,所述透明的生化组成简化了肝脏的复杂性升微环境5,流动动力学6,7和生物基质8的结构。在生物基质的结构可分为参数,如支架材料,细胞外基质(ECM)蛋白的组合物,基质硬度以及支架的设计和结构。已经有使用合成水凝胶,特别是聚(乙二醇)(PEG)水凝胶9的组织工程研究的上升,由于能够调整水凝胶的机械性能,生物活性,和降解速率。对于肝脏相关的研究,生物相容性水凝胶应用于肝病3的病毒感染研究。作为肝细胞平台设计,许多研究已经利用肝细胞三明治培养10,11和电池封装的水凝胶12,13内,以提供3D环境和细胞ECM和细胞-细胞相互作用这是必不可少的体内微环境模仿。豪版本,这些平台不具有高度的控制和空间组织的,通过支架14导致非均匀的性质。

倒晶胶体(ICC)14脚手架是,首先在21世纪初引进的细胞培养具有高度组织性的三维支架。所述支架的独特结构可以归因于使用的胶态晶体,可变直径的胶体粒子的有序晶格的简单的制造过程。简要地说,以总结的过程中,颗粒被整齐排列并利用热,以形成晶格退火。这种晶格的浸出,通过一种有机溶剂,在六边形填充球形腔室15具有高表面积的聚合水凝胶的结果。这种高度有序的支架已与合成和天然材料先前已经制成,包括但不限于聚(丙烯酰胺)16-21,聚(乳酸-共-乙醇酸)15,22-30,聚(乙二醇)31,32,聚(2-羟乙基甲基丙烯酸酯)21,33-35,和脱乙酰壳多糖36-39。由非污染材料ICC支架往往空腔14,23,40内促进细胞球体。多种细胞类型已经显示成功增殖,此配置中的分化和功能,包括软骨细胞41,骨髓基质细胞42,和干细胞43,44。关于肝细胞,研究已经与由钠2的SiO 3和聚(丙烯酰胺)的IC卡的支架,但不PEG进行。用简单的生物结合策略( ,通过EDC / NHS胺偶联),ECM蛋白缀合的PEG基的支架可被制造,这可以证明更多细胞的结合位点是一个象环境体内和增强肝功能。

在这份手稿和相关的视频,我们详细介绍了ICC支架的制造使用聚(乙二醇)二丙烯酸酯(PEGDA)水凝胶和聚苯乙烯微球的晶格,用于肝癌优化(的Huh-7.5)培养。我们证明在脚手架拓扑和电池性能方面的一般非粘着裸PEGDA ICC支架和胶原涂层PEGDA ICC脚手架之间的差异。细胞活力和功能测定定性和定量评估的Huh-7.5细胞的行为。

Protocol

1. ICC脚手架制作(图1) 制备聚苯乙烯(PS)棱(直径= 6毫米;珠8-13层)。 为了准备模具,从0.2毫升煮沸型离心管切的提示关闭在40微升的水平。附着切割管的顶端与防水胶24×60毫米2显微镜盖玻璃滑动。 放包含在水悬浮液中进20ml小瓶在PS球(直径= 140微米),小心地吸取出来的水悬浮液,并加入18毫升70%的乙醇溶液到小瓶。把球体溶液放入超声波浴松开凝集球体。重?…

Representative Results

对于IC卡支架的结构表征和各IC卡支架状态的功效的在培养的肝细胞比较代表结果示和说明。在这些结果中使用的IC卡的支架条件是0微克/毫升(裸),20微克/毫升(胶原20),200微克/毫升(胶原200),和400微克/毫升(胶原400)和初始胶原涂层咦-7.5细胞种植数量为1×10 6。 ICC孔互连和支架的拓扑结构表征。 <p class="jov…

Discussion

组织工程支架的快速发展提供一切必要的再生,维持或器官替代的应用程序修复组织,研究疾病,药物开发的物理和生化线索,和许多其他57。在肝组织工程,原代人肝细胞迅速失去其代谢功能,一旦从主体分离,从而为工程支架非常需要和显影平台维持肝功能。 体外肝细胞培养平台目前已经利用不同的生物材料。在这方面的研究已集中于模仿体内肝微环境的各种特征,如EC…

Disclosures

The authors have nothing to disclose.

Acknowledgements

笔者希望从国家研究基金会奖学金(NRF -NRFF2011-01)与竞争研究计划(NRF-CRP10-2012-07)承认支持。

Materials

0.2 mL PCR tube Axygen Scientific PCR-02D-C Boil-proof
Gorilla Glue Gorilla Glue, Inc. Depends on vendor. This was purchased from a local store.
Glass slides VWR  631-1575 Dimensions: 24×60 mm
Polystyrene spheres  Fisher Scientific TSS#4314A Diameter = 140 um; 3×10^4 particles per milliliter and 1.4% size distribution
Ethanol Merck 1.00983.1011 absolute for analysis EMSURE; Dilute to 70% with Milli-Q water
Ultrasonic Bath Elma S10H Equiment
Furnace Nabertherm N7/H Equipment
200 µL pipette tip Axygen Scientific T-210-Y-R-S
Rocking shaker VWR 444-0142
Polyethylene Glycol (PEG) Merck 1.09727.0100 Mw= 4kDa; acrylation of PEG monomers and purification of the resulting precipitate produces a PEGDA macromer with Mw = 4.6kDa
Centrifuge Beckman Coulter 392932 Equipment
Acrylate-Poly (Ethylene Glycol) – Succinimidyl Valerate  Laysan Bio ACRL-PEG-SVA-3400-1g Mw = 3.4 kDa
2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Sigma Aldrich 410896
Vortex VWR 58816-123 Equipment
Microcentrifuge Eppendorf 5404 000.413
Paraffin Film  Parafilm M  #PM996 Kept at 9" with allows intensity of 10.84 mW/cm^2
Bluewave 200 UV spotlight Blaze Technology  120008, 122300
Tetrahydrofuran (THF) Merck 107025
Orbital shaker Heidolph 543-123120-00-5 From rat
Collagen Type I Sigma Aldrich C3867-1VL 1X, w/o CaCl & MgCl; Ph = 7.2
Phosphate Buffered Saline (PBS)  Gibco 20012-027 16% W/V AQ. 10x10ml
Paraformaldehyde VWR 43368.9M Equipment
Freezone 4.5 freeze drier Labconco 7750020 Equipment
Sputter coater Jeol Ltd. JFC-1600 Equipment
Scanning Electron Microscope Jeol Ltd. JSM 5310
Anti-mouse primary antibodies against Collagen type I Abcam ab6308
Anti-mouse secondary antibody conjugated with Alexa Fluor 488 Life Technologies A21121
Plate, Tissue Culture 24 Well, Flat Bottom (Nunclon)  Bio-Rev PTE LTD 3820-024
Dulbecco's Modified Eagle's Medium(DMEM)
2.5 g/L Glucose w/ L-Gln
Lonza 12-604F
Fetal Bovine Serum (FBS) Gibco A15-151
Penicillin-Streptomycin (P/S) Life Tchnologies 15140-122 E
APC49‐Huh ‐7.5 Cell Line Apath
100 mm Corning non-treated culture dishes Sigma Aldrich CLS430591
0.25% Trypsin-EDTA Gibco 25200-056 Equipment; 37°C, 5% Humidity
Forma Steri-Cycle CO2 Incubators Thermofisher Scientific 371
Hausser Bright-Line Phase Hemacytometer Thermofisher Scientific 02-671-6
Live/Dead Viability/Cytotoxicity Kit 'for mammalian cells Life Technologies L3224 
CCK-8 Assay Dojindo Laboratories CK04-11 Monosodium-salt reagent (MSR)
Infinite 200 PRO microplate reader  Tecan
Albumin Human ELISA kit Abcam ab108788
Triton X-100 Bio-Rad #1610407
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153-50G
Anti-mouse primary antibodies (against CYP3A4, albumin) Santa Cruz Biotechnology sc-53850; sc-271605
DAPI Life Technologies D3571
Alexa Fluor 555 labelled Phalloidin Life Technologies A34055
Trizol Life Technologies 15596-026
Chloroform VWR 22706.326
Isopropanol Fisher Scientific 67-63-0
DPEC water Thermofisher Scientific AM9916
Nanodrop 2000c Spectrophotometer Thermofisher Scientific ND-2000
iScript Reverse Transcription Supermix  Bio-Rad Laboratories 1708840
SYBR select Master Mix for CFX Life Technology 4472937
Primers (to be chosen)
CFX96 Real-Time System, C-1000 Touch Thermal Cycler Bio Rad Laboratories SOFT-CFX-31-PATCH 

References

  1. Yamada, M., et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 33 (33), 8304-8315 (2012).
  2. Abboud, G., Kaplowitz, N. Drug-induced liver injury. Drug Safety. 30 (4), 277-294 (2007).
  3. Cho, N. J., et al. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomed Mater. 4 (1), (2009).
  4. Revzin, A., et al. Designing a hepatocellular microenvironment with protein microarraying and poly (ethylene glycol) photolithography. Langmuir. 20 (8), 2999-3005 (2004).
  5. Sato, A., Kadokura, K., Uchida, H., Tsukada, K. An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Bioph Res Com. 453 (4), 767-771 (2014).
  6. Domansky, K., et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip. 10 (1), 51-58 (2010).
  7. Hegde, M., et al. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip. 14 (12), 2033-2039 (2014).
  8. Flaim, C. J., Chien, S., Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat methods. 2 (2), 119-125 (2005).
  9. Underhill, G. H., Chen, A. A., Albrecht, D. R., Bhatia, S. N. Assessment of hepatocellular function within PEG hydrogels. Biomaterials. 28 (2), 256-270 (2007).
  10. Dunn, J., Tompkins, R. G., Yarmush, M. L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J cell biol. 116 (4), 1043-1053 (1992).
  11. Dunn, J. C., Tompkins, R. G., Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol progr. 7 (3), 237-245 (1991).
  12. Ling, Y., et al. A cell-laden microfluidic hydrogel. Lab Chip. 7 (6), 756-762 (2007).
  13. Kim, M., Lee, J. Y., Jones, C. N., Revzin, A., Tae, G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 31 (13), 3596-3603 (2010).
  14. Kotov, N. A., et al. Inverted Colloidal Crystals as Three-Dimensional Cell Scaffolds. Langmuir. 20 (19), 7887-7892 (2004).
  15. Shanbhag, S., Woo Lee, J., Kotov, N. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. Biomaterials. 26 (27), 5581-5585 (2005).
  16. Lee, Y. H., Huang, J. R., Wang, Y. K., Lin, K. H. Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature. Integr Biol. 5, 1447-1455 (2013).
  17. da Silva, J., Lautenschlager, F., Kuo, C. H. R., Guck, J., Sivaniah, E. 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integr Biol. 3, 1202-1206 (2011).
  18. da Silva, J., Lautenschlager, F., Sivaniah, E., Guck, J. R. The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials. 31, 2201-2208 (2010).
  19. Lee, J., Lilly, G. D., Doty, R. C., Podsiadlo, P., Kotov, N. A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small. 5, 1213-1221 (2009).
  20. Lee, J., Kotov, N. A. Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small. 5, 1008-1013 (2009).
  21. Liu, Y., et al. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. J Biomed Mater Res. Part A. 83, 1-9 (2007).
  22. Ma, P. X., Choi, J. W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7, 23-33 (2001).
  23. Cuddihy, M. J., Kotov, N. A. Poly (lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Eng Part A. 14, 1639-1649 (2008).
  24. Choi, S. W., Zhang, Y., Xia, Y. Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure. Langmuir. 26, 19001-19006 (2010).
  25. Choi, S. W., Zhang, Y., Thomopoulos, S., Xia, Y. In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir. 26, 12126-12131 (2010).
  26. Choi, S. W., Zhang, Y., Macewan, M. R., Xia, Y. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv Healthc Mater. 2, 145-154 (2013).
  27. Zhang, Y., Choi, S. W., Xia, Y. Modifying the Pores of an Inverse Opal Scaffold With Chitosan Microstructures for Truly Three-Dimensional Cell Culture. Macromol Rapid Commun. 33, 296-301 (2012).
  28. Cai, X., et al. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng. Part C, Meth. 19, 196-204 (2013).
  29. Zhang, Y. S., Yao, J., Wang, L. V., Xia, Y. Fabrication of Cell Patches Using Biodegradable Scaffolds with a Hexagonal Array of Interconnected Pores (SHAIPs). Polymer. 55, 445-452 (2014).
  30. Zhang, Y. S., Regan, K. P., Xia, Y. Controlling the Pore Sizes and Related Properties of Inverse Opal Scaffolds for Tissue Engineering Applications. Macromol Rapid Commun. 34, 485-491 (2013).
  31. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E., Irvine, D. J. Bioactive Hydrogels with an Ordered Cellular Structure Combine Interconnected Macroporosity and Robust Mechanical Properties. Adv Mater. 17, 399-403 (2005).
  32. Stachowiak, A. N., Irvine, D. J. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res. Part A. 85, 815-828 (2008).
  33. Liu, Y., Wang, S. 3D inverted opal hydrogel scaffolds with oxygen sensing capability. Colloids and surfaces. B, Biointerfaces. 58, 8-13 (2007).
  34. Bryant, S. J., Cuy, J. L., Hauch, K. D., Ratner, B. D. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 28, 2978-2986 (2007).
  35. Bhrany, A. D., Irvin, C. A., Fujitani, K., Liu, Z., Ratner, B. D. Evaluation of a sphere-templated polymeric scaffold as a subcutaneous implant. JAMA facial plastic surgery. 15, 29-33 (2013).
  36. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32 (3), 819-831 (2011).
  37. Yang, J. T., Kuo, Y. C., Chiu, K. H. Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury. Colloids Surf. B, Biointerfaces. 84, 198-205 (2011).
  38. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  39. Choi, S. W., Xie, J., Xia, Y. Chitosan-Based Inverse Opals: Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Adv Mater. 21, 2997-3001 (2009).
  40. Long, T. J., Sprenger, C. C., Plymate, S. R., Ratner, B. D. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Biomaterials. 35, 8164-8174 (2014).
  41. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  42. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32, 819-831 (2011).
  43. Lee, J., Cuddihy, M. J., Cater, G. M., Kotov, N. A. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials. 30 (27), 4687-4694 (2009).
  44. Galperin, A., et al. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater. 2, 872-883 (2013).
  45. Waters, D. J., et al. Morphology of Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering. Macromolecules. 43 (16), 6861-6870 (2010).
  46. Elbert, D. L., Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules. 2 (2), 430-441 (2001).
  47. Kim, M. H., et al. Biofunctionalized Hydrogel Microscaffolds Promote Three-Dimensional Hepatic Sheet Morphology. Macromol Biosci. , (2015).
  48. Ferreira, T., Rasband, W. . ImageJ User Guide. , (2012).
  49. JoVE Science Education Database. . General Laboratory Techniques. Introduction to Fluorescence Microscopy. , (2015).
  50. Tominaga, H., et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 36 (2), 47-50 (1999).
  51. JoVE Science Education Database. . General Laboratory Techniques. Introduction to the Microplate Reader. , (2015).
  52. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. The ELISA Method. , (2015).
  53. Nolan, T., Hands, R. E., Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 1, 1559-1582 (2006).
  54. JoVE Science Education Database. . Essentials of Environmental Microbiology. RNA Analysis of Environmental Samples Using RT-PCR. , (2016).
  55. JoVE Science Education. . Essentials of Environmental Microbiology. , (2015).
  56. Jeong, S., et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell. 132 (5), 783-793 (2008).
  57. Griffith, L. G., Naughton, G. Tissue engineering–current challenges and expanding opportunities. Science. 295 (5557), 1009-1014 (2002).
  58. Hegde, M., et al. Dynamic Interplay of Flow and Collagen Stabilizes Primary Hepatocytes Culture in a Microfluidic Platform. Lab Chip. 14, 2033-2039 (2014).
  59. Kim, Y., Lasher, C. D., Milford, L. M., Murali, T., Rajagopalan, P. A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Pt C. 16 (6), 1449-1460 (2010).
  60. Baimakhanov, Z., et al. Efficacy of multi-layered hepatocyte sheet transplantation for radiation-induced liver damage and partial hepatectomy in a rat model. Cell Transplant. , (2015).
  61. Li, C. Y., et al. Micropatterned Cell-Cell Interactions Enable Functional Encapsulation of Primary Hepatocytes in Hydrogel Microtissues. Tissue Eng Pt A. 20 (15-16), 2200-2212 (2014).
  62. Shlomai, A., et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. P Natl A Sci USA. 111 (33), 12193-12198 (2014).
  63. Curcio, E., et al. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 28, 5487-5497 (2007).
  64. Martinez-Hernandez, A., Amenta, P. The hepatic extracellular matrix. Vichows Archiv A Pathol Anat. 423, 1-11 (1993).
  65. Liu, Y., Wang, S., Lee, J. W., Kotov, N. A. A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. Chem Mater. 17 (20), 4918-4924 (2005).

Play Video

Cite This Article
Shirahama, H., Kumar, S. K., Jeon, W., Kim, M. H., Lee, J. H., Ng, S. S., Tabaei, S. R., Cho, N. Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell Culture Platform for Liver Tissue Engineering. J. Vis. Exp. (114), e54331, doi:10.3791/54331 (2016).

View Video