Summary

Fabrikation af Inverted Kolloid Crystal Poly (ethylenglycol) Stillads: En Tre-dimensionel Cell Culture Platform for levervæv Engineering

Published: August 27, 2016
doi:

Summary

This manuscript presents a detailed protocol for the fabrication of an emerging three-dimensional hepatocyte culture platform, the inverted colloidal crystal scaffold, and the concomitant techniques to assess hepatocyte behavior. The size-controllable pores, interconnectivity and ability to conjugate extracellular matrix proteins to the poly(ethylene glycol) (PEG) scaffold enhance Huh-7.5 cell performance.

Abstract

Evnen til at opretholde hepatocyt funktion in vitro, med det formål at teste xenobiotika 'cytotoksicitet, studerer virusinfektion og udvikling af lægemidler rettet mod leveren, kræver en platform, hvor celler modtager passende biokemiske og mekaniske signaler. Nylige levervæv tekniske systemer har ansat tre-dimensionelle (3D) stilladser sammensat af syntetiske eller naturlige hydrogeler, da deres høje væskeophobning og deres evne til at levere de mekaniske stimuli nødvendige for cellerne. Der har været en stigende interesse for den omvendte kolloide krystal (ICC) stillads, en ny udvikling, der giver høj rumlig organisation, homotypisk og heterotypisk celle interaktion, samt celle-ekstracellulær matrix (ECM) interaktion. Heri beskriver vi en protokol til fremstilling ICC stillads anvendelse af poly (ethylenglycol) diacrylat (PEGDA) og partiklen udvaskning metode. Kort fortalt et gitter fremstillet af mikrokugle-partikler, hvorefter en præ-polymetilsættes r opløsning, korrekt polymeriseret, og partiklerne fjernes derefter, eller udvaskes, anvendelse af et organisk opløsningsmiddel (f.eks tetrahydrofuran). Opløsningen af ​​gitter resulterer i en meget porøs scaffold med kontrollerede porestørrelser og interconnectivities der tillader medier til at nå celler lettere. Denne unikke struktur muliggør højt overfladeareal for at cellerne kan klæbe til samt nem kommunikation mellem porerne, og evnen til at belægge PEGDA ICC stillads med proteiner viser også en markant virkning på celle ydeevne. Vi analyserer morfologien af ​​stilladset samt leverkarcinom celle (Huh-7,5) adfærd med hensyn til levedygtighed og funktion at udforske effekten af ​​ICC struktur og ECM overtræk. Samlet set dette papir giver en detaljeret protokol af en spirende stillads, der har brede anvendelser i tissue engineering, især levervæv engineering.

Introduction

Leveren er et stærkt vaskulariseret organ med et væld af funktioner, herunder afgiftning af blod, metabolisme af xenobiotika, og produktionen af ​​serumproteiner. Levervæv har en kompleks tredimensional (3D) mikrostruktur, bestående af flere celletyper, galde-canaliculi, sinuskurver, og zoner med forskellig biomatrix sammensætning og forskellige oxygenkoncentrationer. I betragtning af denne omfattende struktur, har det været vanskeligt at skabe en ordentlig liver model in vitro 1. Der er imidlertid en stigende efterspørgsel efter funktionelle in vitro-modeller hosting humane hepatocytter som platforme for testning lægemiddeltoksicitet 2 og studere sygdomme forbundet med leveren 3.

Nuværende liver tissue engineering platforme har forenklet kompleksiteten af leveren ved at isolere én eller fokusere på et par, af leverens parametre, nemlig co-dyrkning af celler 4, biokemiske sammensætning af zonal mikromiljøer 5, strømningsdynamik 6,7 og konfigurationen af biomatrix 8. Konfiguration af biomatrix kan opdeles i parametre som stillads materialer, sammensætning af ekstracellulær matrix (ECM) proteiner, matrix stivhed samt konstruktion og struktur af stilladset. Der har været en stigning i vævsmanipulation studier under anvendelse af syntetiske hydrogeler, især poly (ethylenglycol) (PEG) hydrogeler 9, får mulighed for at tune hydrogelens mekaniske egenskaber, bioaktivitet, og nedbrydningshastighed. Med hensyn til lever-relateret forskning, blev biokompatible hydrogel ansøgt om virusinfektion undersøgelse af leversygdom 3. Som en hepatocyt platform design, har talrige undersøgelser udnyttet hepatocyt sandwich kulturer 10,11 og celleindkapsling inden en hydrogel 12,13 til tilvejebringelse af 3D-miljø og celle-ECM og celle-celle-interaktion, som er væsentlige for at efterligne in vivo mikromiljø. However, behøver disse platforme ikke besidder en høj grad af kontrol og rumlig organisation, hvilket fører til ikke-ensartede egenskaber gennem stilladset 14.

Den omvendte krystal kolloid (ICC) 14 stillads er et velorganiseret 3D stillads for cellekultur, som først blev introduceret i begyndelsen af 2000'erne. Stilladset unikke struktur kan tilskrives den enkle fremstillingsproces ved anvendelse af en kolloid krystal, en ordnet gitter af kolloide partikler med variabel diameter. Kort fortalt, for at opsummere processen, partikler pænt arrangeret og udglødet ved anvendelse af varme til dannelse af et gitter. Udvaskningen af dette gitter, som et organisk opløsningsmiddel, i en polymeriseret hydrogel resulterer i Hexagonal pakket sfæriske hulrum 15 med stort overfladeareal. Denne yderst ordnet stillads er tidligere blevet fremstillet med både syntetiske og naturlige materialer, herunder, men ikke begrænset til poly (acrylamid) 16-21, poly (mælke-co-glycolsyre) 15,22-30, Poly (ethylenglycol) 31,32, poly (2-hydroxyethylmethacrylat) 21,33-35, og chitosan 36-39. ICC stilladser fremstillet af ikke-fouling materialer har en tendens til at fremme cellulære sfæroider inde i hulrummene 14,23,40. Flere celletyper har vist sig at kunne formere sig, differentiere og funktion inden denne konfiguration, herunder chondrocytter 41, stromale knoglemarvsceller 42, og stamceller 43,44. Med hensyn hepatocyt, har undersøgelserne været udført med ICC stilladser lavet af Na 2 SiO 3 og poly (acrylamid), men ikke PEG. Med enkle bioconjugation strategier (dvs. aminkobling gennem EDC / NHS), kan ECM-proteiner-konjugerede PEG-baserede scaffolds skal fremstilles, der kan vise sig mere cellebindende sider for at være en mere in vivo lignende miljø og forbedre leverfunktion.

I dette manuskript og den tilhørende video, we detaljer fremstillingen af ​​ICC stilladsanvendelse af poly (ethylenglycol) diacrylat (PEGDA) hydrogel og en polystyren mikrosfære gitter, optimeret til leverkarcinom (Huh-7,5) kultur. Vi demonstrerer forskellene mellem de generelt ikke-klæbende nøgne PEGDA ICC stilladser og collagen-coatede PEGDA ICC stillads i form af stillads topologi og celleydelsen. Cellernes levedygtighed og funktion måles kvalitativt og kvantitativt at vurdere Huh-7.5 celle adfærd.

Protocol

1. ICC Stillads Fabrication (figur 1) Forbered polystyren (PS) gitre (diameter = 6 mm, 8-13 lag af perler). For at forberede formen, skæres de tips af fra 0,2 ml koge-bevis mikrocentrifugerør på 40 pi niveau. Overhold toppen af cut-rør til 24 x 60 mm 2 mikroskop dække glas glider med vandtæt lim. Sæt PS kugler (diameter = 140 um) indeholdt i en vandsuspension i et 20 ml hætteglas, omhyggeligt pipette vandet ud suspensionen, og der tilsættes 18 ml 70% ethanol-opløsning i…

Representative Results

De repræsentative resultater for den strukturelle karakterisering af ICC stillads og sammenligningen af ​​hver ICC stillads tilstand s effekt i dyrkning hepatocytter er vist og forklaret nedenfor. ICC stillads betingelser anvendt i disse resultater er kollagen belægninger af 0 ug / ml (Bare), 20 ug / ml (Collagen 20), 200 ug / ml (Collagen 200) og 400 ug / ml (Kollagen 400) og den første huh-7.5 celle seeding nummer er 1×10 6. <p class="jove_content" fo:keep-togethe…

Discussion

Tissue engineering stilladser er i rivende udvikling til at give alle de fysiske og biokemiske signaler, der er nødvendige for at regenerere, vedligeholde eller reparere væv for anvendelsen af orgel udskiftning, studere sygdom, at udvikle lægemidler, og mange andre 57. I levervæv engineering, primære, humane hepatocytter hurtigt mister deres metaboliske funktioner gang isoleret fra kroppen, hvilket skaber et stort behov for engineering scaffolds og udvikle platforme til at opretholde den leverfunktion. D…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne ønsker at anerkende støtte fra en Grundforskningsfonden Fellowship (NRF -NRFF2011-01) og konkurrencedygtig forskning program (NRF-CRP10-2012-07).

Materials

0.2 mL PCR tube Axygen Scientific PCR-02D-C Boil-proof
Gorilla Glue Gorilla Glue, Inc. Depends on vendor. This was purchased from a local store.
Glass slides VWR  631-1575 Dimensions: 24×60 mm
Polystyrene spheres  Fisher Scientific TSS#4314A Diameter = 140 um; 3×10^4 particles per milliliter and 1.4% size distribution
Ethanol Merck 1.00983.1011 absolute for analysis EMSURE; Dilute to 70% with Milli-Q water
Ultrasonic Bath Elma S10H Equiment
Furnace Nabertherm N7/H Equipment
200 µL pipette tip Axygen Scientific T-210-Y-R-S
Rocking shaker VWR 444-0142
Polyethylene Glycol (PEG) Merck 1.09727.0100 Mw= 4kDa; acrylation of PEG monomers and purification of the resulting precipitate produces a PEGDA macromer with Mw = 4.6kDa
Centrifuge Beckman Coulter 392932 Equipment
Acrylate-Poly (Ethylene Glycol) – Succinimidyl Valerate  Laysan Bio ACRL-PEG-SVA-3400-1g Mw = 3.4 kDa
2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Sigma Aldrich 410896
Vortex VWR 58816-123 Equipment
Microcentrifuge Eppendorf 5404 000.413
Paraffin Film  Parafilm M  #PM996 Kept at 9" with allows intensity of 10.84 mW/cm^2
Bluewave 200 UV spotlight Blaze Technology  120008, 122300
Tetrahydrofuran (THF) Merck 107025
Orbital shaker Heidolph 543-123120-00-5 From rat
Collagen Type I Sigma Aldrich C3867-1VL 1X, w/o CaCl & MgCl; Ph = 7.2
Phosphate Buffered Saline (PBS)  Gibco 20012-027 16% W/V AQ. 10x10ml
Paraformaldehyde VWR 43368.9M Equipment
Freezone 4.5 freeze drier Labconco 7750020 Equipment
Sputter coater Jeol Ltd. JFC-1600 Equipment
Scanning Electron Microscope Jeol Ltd. JSM 5310
Anti-mouse primary antibodies against Collagen type I Abcam ab6308
Anti-mouse secondary antibody conjugated with Alexa Fluor 488 Life Technologies A21121
Plate, Tissue Culture 24 Well, Flat Bottom (Nunclon)  Bio-Rev PTE LTD 3820-024
Dulbecco's Modified Eagle's Medium(DMEM)
2.5 g/L Glucose w/ L-Gln
Lonza 12-604F
Fetal Bovine Serum (FBS) Gibco A15-151
Penicillin-Streptomycin (P/S) Life Tchnologies 15140-122 E
APC49‐Huh ‐7.5 Cell Line Apath
100 mm Corning non-treated culture dishes Sigma Aldrich CLS430591
0.25% Trypsin-EDTA Gibco 25200-056 Equipment; 37°C, 5% Humidity
Forma Steri-Cycle CO2 Incubators Thermofisher Scientific 371
Hausser Bright-Line Phase Hemacytometer Thermofisher Scientific 02-671-6
Live/Dead Viability/Cytotoxicity Kit 'for mammalian cells Life Technologies L3224 
CCK-8 Assay Dojindo Laboratories CK04-11 Monosodium-salt reagent (MSR)
Infinite 200 PRO microplate reader  Tecan
Albumin Human ELISA kit Abcam ab108788
Triton X-100 Bio-Rad #1610407
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153-50G
Anti-mouse primary antibodies (against CYP3A4, albumin) Santa Cruz Biotechnology sc-53850; sc-271605
DAPI Life Technologies D3571
Alexa Fluor 555 labelled Phalloidin Life Technologies A34055
Trizol Life Technologies 15596-026
Chloroform VWR 22706.326
Isopropanol Fisher Scientific 67-63-0
DPEC water Thermofisher Scientific AM9916
Nanodrop 2000c Spectrophotometer Thermofisher Scientific ND-2000
iScript Reverse Transcription Supermix  Bio-Rad Laboratories 1708840
SYBR select Master Mix for CFX Life Technology 4472937
Primers (to be chosen)
CFX96 Real-Time System, C-1000 Touch Thermal Cycler Bio Rad Laboratories SOFT-CFX-31-PATCH 

References

  1. Yamada, M., et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 33 (33), 8304-8315 (2012).
  2. Abboud, G., Kaplowitz, N. Drug-induced liver injury. Drug Safety. 30 (4), 277-294 (2007).
  3. Cho, N. J., et al. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomed Mater. 4 (1), (2009).
  4. Revzin, A., et al. Designing a hepatocellular microenvironment with protein microarraying and poly (ethylene glycol) photolithography. Langmuir. 20 (8), 2999-3005 (2004).
  5. Sato, A., Kadokura, K., Uchida, H., Tsukada, K. An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Bioph Res Com. 453 (4), 767-771 (2014).
  6. Domansky, K., et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip. 10 (1), 51-58 (2010).
  7. Hegde, M., et al. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform. Lab Chip. 14 (12), 2033-2039 (2014).
  8. Flaim, C. J., Chien, S., Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nat methods. 2 (2), 119-125 (2005).
  9. Underhill, G. H., Chen, A. A., Albrecht, D. R., Bhatia, S. N. Assessment of hepatocellular function within PEG hydrogels. Biomaterials. 28 (2), 256-270 (2007).
  10. Dunn, J., Tompkins, R. G., Yarmush, M. L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J cell biol. 116 (4), 1043-1053 (1992).
  11. Dunn, J. C., Tompkins, R. G., Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol progr. 7 (3), 237-245 (1991).
  12. Ling, Y., et al. A cell-laden microfluidic hydrogel. Lab Chip. 7 (6), 756-762 (2007).
  13. Kim, M., Lee, J. Y., Jones, C. N., Revzin, A., Tae, G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 31 (13), 3596-3603 (2010).
  14. Kotov, N. A., et al. Inverted Colloidal Crystals as Three-Dimensional Cell Scaffolds. Langmuir. 20 (19), 7887-7892 (2004).
  15. Shanbhag, S., Woo Lee, J., Kotov, N. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry. Biomaterials. 26 (27), 5581-5585 (2005).
  16. Lee, Y. H., Huang, J. R., Wang, Y. K., Lin, K. H. Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature. Integr Biol. 5, 1447-1455 (2013).
  17. da Silva, J., Lautenschlager, F., Kuo, C. H. R., Guck, J., Sivaniah, E. 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integr Biol. 3, 1202-1206 (2011).
  18. da Silva, J., Lautenschlager, F., Sivaniah, E., Guck, J. R. The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials. 31, 2201-2208 (2010).
  19. Lee, J., Lilly, G. D., Doty, R. C., Podsiadlo, P., Kotov, N. A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small. 5, 1213-1221 (2009).
  20. Lee, J., Kotov, N. A. Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small. 5, 1008-1013 (2009).
  21. Liu, Y., et al. Rapid aqueous photo-polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidal crystal scaffolds. J Biomed Mater Res. Part A. 83, 1-9 (2007).
  22. Ma, P. X., Choi, J. W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 7, 23-33 (2001).
  23. Cuddihy, M. J., Kotov, N. A. Poly (lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Eng Part A. 14, 1639-1649 (2008).
  24. Choi, S. W., Zhang, Y., Xia, Y. Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure. Langmuir. 26, 19001-19006 (2010).
  25. Choi, S. W., Zhang, Y., Thomopoulos, S., Xia, Y. In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir. 26, 12126-12131 (2010).
  26. Choi, S. W., Zhang, Y., Macewan, M. R., Xia, Y. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv Healthc Mater. 2, 145-154 (2013).
  27. Zhang, Y., Choi, S. W., Xia, Y. Modifying the Pores of an Inverse Opal Scaffold With Chitosan Microstructures for Truly Three-Dimensional Cell Culture. Macromol Rapid Commun. 33, 296-301 (2012).
  28. Cai, X., et al. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng. Part C, Meth. 19, 196-204 (2013).
  29. Zhang, Y. S., Yao, J., Wang, L. V., Xia, Y. Fabrication of Cell Patches Using Biodegradable Scaffolds with a Hexagonal Array of Interconnected Pores (SHAIPs). Polymer. 55, 445-452 (2014).
  30. Zhang, Y. S., Regan, K. P., Xia, Y. Controlling the Pore Sizes and Related Properties of Inverse Opal Scaffolds for Tissue Engineering Applications. Macromol Rapid Commun. 34, 485-491 (2013).
  31. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E., Irvine, D. J. Bioactive Hydrogels with an Ordered Cellular Structure Combine Interconnected Macroporosity and Robust Mechanical Properties. Adv Mater. 17, 399-403 (2005).
  32. Stachowiak, A. N., Irvine, D. J. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res. Part A. 85, 815-828 (2008).
  33. Liu, Y., Wang, S. 3D inverted opal hydrogel scaffolds with oxygen sensing capability. Colloids and surfaces. B, Biointerfaces. 58, 8-13 (2007).
  34. Bryant, S. J., Cuy, J. L., Hauch, K. D., Ratner, B. D. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 28, 2978-2986 (2007).
  35. Bhrany, A. D., Irvin, C. A., Fujitani, K., Liu, Z., Ratner, B. D. Evaluation of a sphere-templated polymeric scaffold as a subcutaneous implant. JAMA facial plastic surgery. 15, 29-33 (2013).
  36. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32 (3), 819-831 (2011).
  37. Yang, J. T., Kuo, Y. C., Chiu, K. H. Peptide-modified inverted colloidal crystal scaffolds with bone marrow stromal cells in the treatment for spinal cord injury. Colloids Surf. B, Biointerfaces. 84, 198-205 (2011).
  38. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  39. Choi, S. W., Xie, J., Xia, Y. Chitosan-Based Inverse Opals: Three-Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Adv Mater. 21, 2997-3001 (2009).
  40. Long, T. J., Sprenger, C. C., Plymate, S. R., Ratner, B. D. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Biomaterials. 35, 8164-8174 (2014).
  41. Kuo, Y. C., Tsai, Y. T. Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules. 11, 731-739 (2010).
  42. Kuo, Y. C., Chiu, K. H. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials. 32, 819-831 (2011).
  43. Lee, J., Cuddihy, M. J., Cater, G. M., Kotov, N. A. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials. 30 (27), 4687-4694 (2009).
  44. Galperin, A., et al. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater. 2, 872-883 (2013).
  45. Waters, D. J., et al. Morphology of Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering. Macromolecules. 43 (16), 6861-6870 (2010).
  46. Elbert, D. L., Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules. 2 (2), 430-441 (2001).
  47. Kim, M. H., et al. Biofunctionalized Hydrogel Microscaffolds Promote Three-Dimensional Hepatic Sheet Morphology. Macromol Biosci. , (2015).
  48. Ferreira, T., Rasband, W. . ImageJ User Guide. , (2012).
  49. JoVE Science Education Database. . General Laboratory Techniques. Introduction to Fluorescence Microscopy. , (2015).
  50. Tominaga, H., et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 36 (2), 47-50 (1999).
  51. JoVE Science Education Database. . General Laboratory Techniques. Introduction to the Microplate Reader. , (2015).
  52. JoVE Science Education Database. . Basic Methods in Cellular and Molecular Biology. The ELISA Method. , (2015).
  53. Nolan, T., Hands, R. E., Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 1, 1559-1582 (2006).
  54. JoVE Science Education Database. . Essentials of Environmental Microbiology. RNA Analysis of Environmental Samples Using RT-PCR. , (2016).
  55. JoVE Science Education. . Essentials of Environmental Microbiology. , (2015).
  56. Jeong, S., et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell. 132 (5), 783-793 (2008).
  57. Griffith, L. G., Naughton, G. Tissue engineering–current challenges and expanding opportunities. Science. 295 (5557), 1009-1014 (2002).
  58. Hegde, M., et al. Dynamic Interplay of Flow and Collagen Stabilizes Primary Hepatocytes Culture in a Microfluidic Platform. Lab Chip. 14, 2033-2039 (2014).
  59. Kim, Y., Lasher, C. D., Milford, L. M., Murali, T., Rajagopalan, P. A comparative study of genome-wide transcriptional profiles of primary hepatocytes in collagen sandwich and monolayer cultures. Tissue Eng Pt C. 16 (6), 1449-1460 (2010).
  60. Baimakhanov, Z., et al. Efficacy of multi-layered hepatocyte sheet transplantation for radiation-induced liver damage and partial hepatectomy in a rat model. Cell Transplant. , (2015).
  61. Li, C. Y., et al. Micropatterned Cell-Cell Interactions Enable Functional Encapsulation of Primary Hepatocytes in Hydrogel Microtissues. Tissue Eng Pt A. 20 (15-16), 2200-2212 (2014).
  62. Shlomai, A., et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. P Natl A Sci USA. 111 (33), 12193-12198 (2014).
  63. Curcio, E., et al. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 28, 5487-5497 (2007).
  64. Martinez-Hernandez, A., Amenta, P. The hepatic extracellular matrix. Vichows Archiv A Pathol Anat. 423, 1-11 (1993).
  65. Liu, Y., Wang, S., Lee, J. W., Kotov, N. A. A Floating Self-Assembly Route to Colloidal Crystal Templates for 3D Cell Scaffolds. Chem Mater. 17 (20), 4918-4924 (2005).

Play Video

Cite This Article
Shirahama, H., Kumar, S. K., Jeon, W., Kim, M. H., Lee, J. H., Ng, S. S., Tabaei, S. R., Cho, N. Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell Culture Platform for Liver Tissue Engineering. J. Vis. Exp. (114), e54331, doi:10.3791/54331 (2016).

View Video