Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

Исследование биологии и метаболизма бежевого жира с использованием системы активации CRISPR SunTag-p65-HSF1

Published: January 6, 2023 doi: 10.3791/64849
* These authors contributed equally

Summary

В этом протоколе представлено использование CRISPR SunTag-p65-HSF1 (SPH) в адипоцитах (AdipoSPH) в качестве альтернативной стратегии аденоассоциированному вирусу (AAV) для исследования биологии бежевого жира. Инъекция in vivo несущей AAV сгРНК, нацеленной на эндогенный ген Prdm16, достаточна для того, чтобы индуцировать развитие бежевого жира и усилить программу термогенных генов.

Abstract

Технология кластеризованных регулярно чередующихся коротких палиндромных повторов (CRISPR) вызвала революцию в биологии, и последние инструменты были применены далеко за пределами первоначально описанного редактирования генов. Система активации CRISPR (CRISPRa) сочетает в себе каталитически неактивный белок Cas9 (dCas9) с различными модулями транскрипции, чтобы индуцировать экспрессию эндогенных генов. SunTag-p65-HSF1 (SPH) — это недавно разработанная технология CRISPRa, которая сочетает в себе компоненты синергетических медиаторов активации (SAM) с активаторами SunTag. Эта система обеспечивает сверхэкспрессию одного или нескольких генов путем разработки индивидуальной однонаправляющей РНК (сгРНК). В этом исследовании ранее разработанная мышь SPH была использована для создания условной мыши, экспрессирующей SPH в адипоцитах (линия адипонектина Cre), названной AdipoSPH. Чтобы индуцировать фенотип жира от белого до бежевого (потемнение), аденоассоциированный вирус (AAV), несущий sgРНК, нацеленный на эндогенный ген Prdm16 (хорошо известный фактор транскрипции, связанный с развитием коричневого и бежевого жира), вводили в паховую белую жировую ткань (iWAT). Эта мышиная модель индуцировала экспрессию эндогенного Prdm16 и активировала термогенную генную программу. Кроме того, in vitro SPH-индуцированная сверхэкспрессия Prdm16 увеличивала потребление кислорода бежевыми адипоцитами, фенокопируя результаты предыдущей модели трансгенной мыши Prdm16. Таким образом, этот протокол описывает универсальную, экономичную и эффективную по времени модель мыши для исследования биологии жировой ткани.

Introduction

Бежевые (или бритовые) адипоциты представляют собой разъединяющие адипоциты, экспрессирующие белок 1 (UCP1), и богатые митохондриями адипоциты, которые находятся в депо белой жировой ткани (WAT). Бежевый жир появляется из подмножества предшественников адипоцитов или зрелых белых адипоцитов в ответ на воздействие холода и других раздражителей 1,2. Бежевые адипоциты могут преобразовывать энергию в тепло UCP1-зависимым или независимым образом3. Независимо от своей термогенной функции, бежевый жир также может улучшить метаболическое здоровье другими средствами, такими как секреция адипокинов и противовоспалительная и антифиброзная активность. Исследования на мышах и людях показали, что индукция бежевого жира улучшает гомеостаз глюкозы и липидов всего тела3. Однако, несмотря на то, что наши знания о биологии бежевого жира быстро развивались в последние годы, большинство его метаболических преимуществ и связанных с ними механизмов до сих пор до конца не изучены.

Кластеризованные регулярно чередующиеся короткие палиндромные повторы (CRISPR) были впервые описаны в эукариотических клетках как инструмент, способный генерировать двухцепочечный разрыв (DSB) на определенном участке генома за счет нуклеазной активности белка Cas9 4,5. Cas9 управляется синтетической однонаправляющей РНК (sgRNA) для нацеливания на определенную область генома, что приводит к ДНК DSB. В дополнение к использованию нуклеазы Cas9 для целей редактирования, технология CRISPR-Cas9 эволюционировала, чтобы использоваться в качестве инструмента регуляции генов, специфичного для последовательности6. Разработка каталитически неактивного белка Cas9 (dCas9) и ассоциация транскрипционных модулей, способных усиливать экспрессию генов, привели к появлению инструментов активации CRISPR (CRISPRa). Появилось несколько систем CRISPRa, таких как VP647,8, синергетический медиатор активации (SAM)9, SunTag10,11, VPR12,13 и SunTag-p65-HSF1 (SPH)14, который сочетает в себе компоненты активаторов SAM и SunTag. Недавно было продемонстрировано, что индуцированная экспрессия нейрогенных генов в нейробластах N2a и первичных астроцитах выше при использовании SPH по сравнению с другими системами CRISPRa14, что демонстрирует SPH как перспективный инструмент CRISPRa.

Здесь мы воспользовались ранее разработанной мышью SPH14 для создания условной мышиной модели, экспрессирующей SPH специфически в адипоцитах с использованием линии адипонектина Cre (AdipoSPH). С помощью аденоассоциированного вируса (AAV), несущего гРНК, нацеленную на эндогенный ген Prdm16, было индуцировано потемнение (превращение белого в бежевое) пахового WAT (iWAT) для увеличения экспрессии программы термогенных генов. Кроме того, in vitro сверхэкспрессия Prdm16 усиливает потребление кислорода. Таким образом, этот протокол предоставляет универсальную модель SPH мыши для изучения механизмов развития бежевого жира в жировой ткани.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

Исследования на животных проводились в соответствии с Руководством Университета Кампинаса по уходу и использованию лабораторных животных (протокол CEUA #5810-1/2021).

1. Молекулярное клонирование

  1. Проектирование однонаправляющих РНК (сгРНК)
    1. Разрабатывайте сгРНК для активации CRISPR с помощью CHOPCHOP, доступного по адресу https://chopchop.cbu.uib.no/, или любого другого подходящего инструмента. Используйте следующие параметры для разработки sgRNA, нацеленной на ген Prdm16: Цель: Prdm16; В: Mus musculus; Использование: Crispr/Cas9; Для: Активация.
      ПРИМЕЧАНИЕ: Разработка сгРНК для каждого интересующего региона распространяется на область начального сайта транскрипции (TSS) с частотой 200.н. Например, сгРНК, нацеленная на Prdm16, используемая в этом исследовании, связывается на 154.н. выше по течению от TSS.
    2. Добавьте выступы к sgRNA, чтобы они соответствовали сайту рестрикции SacI в векторной цепи pAAV-U6-gRNA-CBh-mCherry (см. Таблицу материалов). Включают: 5'- (N20)AGCT-3' (N = нуклеотиды). Например, последовательность, нацеленная на ген Prdm16, представляет собой 5'- CGAGCTGCGCTGAAAAAGGG-3', а с выступами - 5'- CGAGCTGCGCTGAAAAGGGGAGCT-3'.
    3. Получите последовательность обратного комплемента 3'-сгРНК с помощью инструмента, доступного по адресу https://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html. Например, последовательность 3'sgRNA, нацеленная на ген Prdm16, представляет собой 3'-TCGAGCTCGACGGACTTTTTCCCC-5'.
  2. Отжиг одноцепочечных комплементарных олигонуклеотидов
    1. Добавьте по 1 мкл каждого 5' и 3' одноцепочечного олигонуклеотида (исходная концентрация: 100 мкМ), 1 мкл буфера Т4-лигазы, 0,5 мкл Т4-полинуклеотидкиназы (PNK) (1 × 10,4 ЕД/мл) и 6,5 мкл H2O к конечному реакционному объему 10 мкл. Отжигают комплементарные одноцепочечные олигонуклеотиды с помощью термоциклера при следующих условиях: 37 °C в течение 30 мин и 95 °C в течение 5 мин с последующим снижением скорости 5 °C/мин.
      ПРИМЕЧАНИЕ: Фермент PNK поставляется с буфером PNK и не содержит достаточного количества АТФ, необходимого для реакции фосфорилирования (см. Таблицу материалов). Для упрощения реакции используют буфер Т4-лигазы (вместо PNK-буфера). Буфер Т4-лигазы обеспечивает соответствующее количество (1 мМ АТФ) фосфата для реакции фосфорилирования. Фермент PNK обеспечивает 5'-концевое фосфорилирование олигонуклеотидов для последующей реакции лигирования.
  3. Лигирование отожженных олигонуклеотидов сгРНК
    1. Добавьте 25 нг плазмиды pAAV-U6-gRNA-CBh-mCherry к 2 мкл отожженных олигонуклеотидов сгРНК, 1 мкл фермента SacI, 2 мкл 10-кратного буфера ДНК-лигазы Т4, 1 мкл ДНК-лигазы Т4 (1-3 ед/мкл) (см. Таблицу материалов) и H2O к конечному реакционному объему 10 мкл.
    2. Лигирование проводят путем инкубации реакционной смеси с помощью термоциклера при следующих условиях: 15 циклов при 37 °C в течение 5 мин и 25 °C в течение 5 мин с последующей выдержкой при 4 °C.
  4. Трансформация с последующей колониальной полимеразной цепной реакцией (ПЦР)
    1. Трансформируют компетентные клетки E. coli DH10B (см. Таблицу материалов) 4 мкл продукта лигирования с помощью теплового шока (42 ° C в течение 45 с) и распределяют по агаровой пластине, содержащей 100 мкг/мл ампициллина.
    2. Подтвердите трансформированные колонии с помощью колонной ПЦР с использованием мастер-микса ПЦР (см. Таблицу материалов). Соберите колонию и смешайте с 5 мкл основной смеси, 0,1 мкл универсального праймера (исходная концентрация: 100 мкМ), 0,1 мкл обратного праймера сгРНК (исходная концентрация: 100 мкМ) (таблица 1) и 5 мкл H 2 O. Запустите ПЦР с помощью термоциклера при следующих условиях: начальная денатурация (94 °C в течение2мин), затем следуют 35 циклов денатурации (94 °C в течение 20 с), отжига (60 °C в течение 30 с), удлинения (72 °C в течение 30 с) и заключительного этапа удлинения (72 °C в течение 5 мин). Рассасывают ДНК с помощью электрофореза в агарозном (1,5%) геле в 0,5-кратном буфере TAE при 90 В в течение 30 мин.
      ПРИМЕЧАНИЕ: Положительные клоны дают диапазон ~ 280 п.н.
    3. Отправьте положительные образцы для секвенирования по Сэнгеру с использованием универсального праймера (таблица 1, дополнительный файл 1).
  5. Плазмидная очистка
    1. Очистите плазмиду от положительного клона с помощью набора для очистки плазмид (см. Таблицу материалов), следуя инструкциям производителя.
      ПРИМЕЧАНИЕ: Очистите плазмиду с помощью анионообменной смолы или другого набора, подходящего для использования при трансфекции клеток.
    2. Инкубируют положительный клон (12 ч при 37 °C с встряхиванием при 200 об/мин) с использованием стандартной среды для роста бактерий, содержащей 100 мкг/мл ампициллина.
    3. Центрифугируют бактериальные клетки при 6000 × г в течение 10 мин при 4 °C. Выполните следующие действия в соответствии с инструкциями производителя.

2. Упаковка AAV

ПРИМЕЧАНИЕ: Упаковка AAV была выполнена в соответствии с предыдущими публикациями15,16 с незначительными изменениями.

  1. Планшет 293T клеток (см. Таблицу материалов) в колбе размером 175 см2 (посев 5 × 106 клеток в колбу) с использованием 25 мл модифицированной орлиной среды Дульбекко (DMEM), содержащей 10% эмбриональной бычьей сыворотки (FBS) и 1% пенициллина/стрептомицина (P/S). Инкубируйте при 37 ° C, 5% CO2 и влажности 95% до тех пор, пока клетки не достигнут слияния 50% -70%.
  2. Смешайте 14 мкл полиэтиленимина (1 мкг/мкл) с 1 мл 150 мМ NaCl. Смешайте три плазмиды, необходимые для производства AAV, в молярном соотношении 1:1:1 (т.е. 17,7 мкг pAdDeltaF6, 7,9 мкг AAV2/8 (см. Таблицу материалов) и 5,9 мкг клонированной сгРНК с шага 1 в 1 мл 150 мМ NaCl. Смесь полиэтиленимина:NaCl переносят по каплям в пробирку, содержащую ДНК (смесь плазмид), и инкубируют в течение 20 мин при 25 °C.
    ПРИМЕЧАНИЕ: pAdDeltaF6 представляет собой вспомогательную плазмиду, а pCapsid pAAV2/8 представляет собой упаковочную плазмиду, экспрессирующую гены репликации (Rep) и капсида (cap). Обе плазмиды необходимы для производства AAV.
  3. Перед трансфекцией замените питательную среду для клеток 18 мл DMEM, содержащего 1% FBS и L-аланил-L-глутамина (0,5 г/л). Добавьте 2 мл смеси полиэтиленимина: ДНК в каждую колбу для культуры и инкубируйте клетки в инкубаторе CO 2 (37 ° C, 5% CO2, влажность 95%).
  4. Через 5 часов добавьте 5 мл DMEM с добавлением 10% FBS и L-аланил-L-глютамина (0,5 г / л).
  5. После 3 дней инкубации отделите клетки от колбы культуры с помощью клеточного скребка. Соберите клетки 293T из 10 (175 см2) колб для клеточных культур в конические пробирки объемом 50 мл и добавьте DMEM (см. Таблицу материалов) до 30 мл.
  6. Добавьте 3 мл хлороформа в каждую коническую пробирку объемом 50 мл, содержащую клетки 293T, и перемешайте с помощью вихревого смесителя на высокой скорости в течение 5 минут. Ресуспендируйте клетки, добавив 7,6 мл 5 М NaCl и кратковременно вихните. Центрифуга при 3 000 × г и 4 °C в течение 5 мин.
  7. Перенесите водную фазу в новую коническую пробирку и добавьте 9,4 мл 50% (об./об.) полиэтиленгликоля (ПЭГ) 8000. Перемешайте вихревым миксером на высокой скорости в течение 10 с и положите образцы на лед на 1 час.
  8. Центрифуга при 3 000 × г при 4 °C в течение 30 мин. Удалите надосадочную жидкость и дайте гранулам высохнуть в течение 10 минут.
  9. Добавьте 1,4 мл HEPES (50 мМ, pH 8) и перемешивайте в течение 5 минут с помощью вихревого смесителя на высокой скорости. Добавьте 3,5 мкл 1 М MgCl2, 14 мкл ДНКазы I (20 единиц/мкл) и1,4 мкл РНКазы А (10 мкг/мкл). Инкубировать на водяной бане с температурой 37 °C в течение 20 мин, а затем переложить образцы в новые пробирки объемом 1,5 мл (700 мкл в каждой пробирке).
  10. Добавьте 700 мкл хлороформа в каждую пробирку объемом 1,5 мл и перемешайте с помощью вихревого смесителя на высокой скорости в течение 10 с. Центрифугу при 3 000 × г при 4 °C в течение 5 мин и перенесите водную фазу в новую пробирку. Повторите этот шаг 3 раза.
  11. Выпарить хлороформ в течение 30 мин в шкафу биобезопасности. Затем перенесите 300 мкл водной фазы в ультрацентрифугирующую пробирку объемом 0,5 мл (см. Таблицу материалов). Отжимайте фильтр при 14 000 × г при 25 °C в течение 5 мин. Снимите проточную часть и снова вращайте фильтр, пока весь объем не пройдет через фильтр.
  12. Промойте фильтр, добавив 300 мкл фосфатно-буферного физиологического раствора Dulbecco (DPBS), и перемешайте растворы пипеткой. Центрифуга фильтра в течение 5 мин при 14 000 × г при 25 °C. Повторите этот шаг стирки 4 раза.
  13. Центрифугируйте фильтр в течение 8 мин при 14 000 × г при 25 °C. Поместите фильтр вверх дном в новую трубку и вращайте в течение 2 минут при 1,000 × г при 25 ° C.

3. Титрование AAV методом кПЦР

  1. Подготовьте стандартную кривую для титрования AAV и определите титр AAV в соответствии с оригинальным исследованием Fripont et al.15.

4. Инъекция AAV in vivo в паховую белую жировую ткань (iWAT)

  1. Разделите хирургические инструменты и расходные материалы, необходимые для операции, и стерилизуйте их в соответствии с рекомендациями для каждого конкретного материала.
  2. Обезболивают мышей 100 мг / кг кетамина и 10 мг / кг ксилазина путем внутрибрюшинной инъекции. Подтвердите анестезию, сильно надавливая на лапу и хвост и проверяя рефлекс. Нанесите мазь на глаза мыши, чтобы избежать сухости глаз во время операции.
  3. Поместите анестезированную мышь в положение лежа на спине и побрейте бритвой небольшой участок по бокам, проксимальнее тазобедренных суставов для инъекций iWAT. Нанесите крем для депиляции на 5 минут. Удалите остатки крема водой, чтобы избежать ожога кожи.
  4. Продезинфицируйте кожу, используя три чередующихся раунда нанесения антисептического раствора (повидон-йод) на кожу чистой марлей и 70% спиртом. Выбрасывайте марлю после каждого использования.
  5. Выполните окончательное нанесение антисептического раствора на кожу. Затем сделайте надрез 1-2 см стерилизованными ножницами в проксимальной области суставов и держите кожу открытой с помощью щипцов, чтобы обнажить жировое депо. WAT можно найти прикрепленным к коже с обеих сторон, простираясь от начала на спине и вниз к яичку.
    ПРИМЕЧАНИЕ: Используйте простыни, чтобы избежать загрязнения во время операции или наложения швов.
  6. Используя щипцы, через разрез осторожно потяните жировое депо вверх, чтобы убедиться, что инъекция находится в правильном месте и на правильной глубине.
    ПРИМЕЧАНИЕ: Будьте осторожны, чтобы не удалить ткань с ее первоначального места.
  7. Наполните микролитровый шприц (калибр: 33; тип точки: 4; угол: 12; длина: 10) (см. Таблицу материалов) 2,5 мкл (5,6 × 1010 вирусных геномов [VG] / мкл) AAV (содержащий sgRNA, нацеленную на эндогенный ген Prdm16). Осторожно вставьте иглу под углом 30°-45° в iWAT. Повторите инъекцию 5 раз в разные места ткани, чтобы гомогенно инфицировать всю жировую подушку iWAT. Для заражения iWAT рекомендуется общий объем 15 мкл.
    ПРИМЕЧАНИЕ: Глубина введения шприца зависит от толщины отложения жировой прокладки. Используйте технику без касания, чтобы сделать инъекцию.
  8. Закройте разрез бритой кожи с помощью монофиламентных швов 4/0. Положите мышь на грелку до тех пор, пока сознание не восстановится. Наблюдайте за животным каждые 10-15 минут, пока оно полностью не выздоровеет. После того, как животное приходит в сознание, наблюдайте за профилированием опорно-двигательного аппарата, которое должно быть линейным и не иметь признаков дистресса или боли.
  9. Выполните послеоперационный контроль боли в течение 48 часов после операции, вводя трамадола гидрохлорид (5 мг / кг) внутрибрюшинно в течение 3 дней (2 раза в день).
    ПРИМЕЧАНИЕ: Следите за признаками стресса и дискомфорта и контролируйте потребление воды и пищи. Дайте эффективную дозу анальгетика упреждающим образом, предпочтительно до или в начале операции.
  10. Держите мышь в клетке со свободным доступом к пище и воде в период заживления. После периода заживления приступайте к эвтаназии мыши. В этом исследовании эвтаназия проводилась путем передозировки инъекционных анестетиков (внутрибрюшинных) от 3-кратной индуцирующей дозы (300-360 мг / кг гидрохлорида кетамина + 30-40 мг / кг гидрохлорида ксилазина) с последующим обезглавливанием.
    ПРИМЕЧАНИЕ: Настоятельно рекомендуется содержать животных в отдельных клетках до полного восстановления после анестезии.

5. Дифференцировка стромальных сосудистых клеток (SVF) в бежевые адипоциты in vitro

  1. Выполните выделение и покрытие первичных SVF из iWAT мышей AdipoSPH в соответствии с Aune et al.17. Семенные SVF, полученные от мышей AdipoSPH iWAT, в 6-луночную пластину, содержащую полную среду (DMEM, содержащую 3,1 г / л глюкозы, 0,5 г / л L-аланил-L-глутамина, 10% FBS и 2,5% P / S) в течение 1-2 часов.
    ПРИМЕЧАНИЕ: Фракция SVF содержит смесь различных типов клеток. На этом этапе невозможно определить количество засеянных клеток-предшественников, дающих начало адипоцитам.
  2. Аспирируйте среду, промойте лунку 2 раза физиологическим раствором с фосфатным буфером (1x PBS) и замените свежей полной средой. Инкубируйте клетки при 37 °C, 5% CO2, влажности 95% до тех пор, пока клетки не достигнут слияния 70-80%.
  3. Индуцируют дифференцировку (день 0), обрабатывая клетки индукционной средой (таблица 2).
    ПРИМЕЧАНИЕ: Лекарственный коктейль индукционной среды необходим для усиления дифференцировки бежевых адипоцитов и для экспрессии термогенной генной программы17.
  4. Через 2 дня (2-й день) замените индукционную среду поддерживающей средой (таблица 2).
  5. Через 2 дня (день 4) замените поддерживающую среду свежей поддерживающей средой (таблица 2) на 2–3 дня.
  6. Меняйте поддерживающую среду каждые 48 ч до тех пор, пока преадипоциты не будут полностью дифференцированы в адипоциты (обычно через 6 дней после добавления индукционной среды). Зрелые адипоциты можно наблюдать с помощью световой микроскопии, так как дифференцированные клетки, по-видимому, загружены липидными каплями.

6. Инфекция ААВ in vitro SVF

ПРИМЕЧАНИЕ: SVF, полученные от мышей AdipoSPH iWAT, были инфицированы SAV-несущей sgRNA-Prdm16, как ранее описано Wang et al.18 , с некоторыми модификациями.

  1. Выращивайте клетки на 6-луночной культуральной пластине с полной средой до тех пор, пока клетки не достигнут слияния 70%-80%, как описано ранее в шагах 5.1-5.3.
  2. Смешайте 5,6 ×10 ВГ/мкл ААВ-несущей сгРНК-Prdm16 с 2 мл полной среды и гексадиметрина бромида (8 мкг/мл) (см. Таблицу материалов). Трансдуцируют клетки, заменяя полную среду и добавляя полную среду, содержащую AAV. Инкубируйте трансдуцированные клетки в течение 12 часов при 37 ° C, влажности 95% и 5% CO2.
  3. Расщепляют и засевают клетки, как описано на шаге 5, для пролиферации и дифференцировки клеток в бежевые адипоциты.
    ПРИМЕЧАНИЕ: Для анализа потребления кислорода затравка 4.0 × 104 клетки (с шага 6.2) на лунку с индукционной средой в 24-луночной чашке для культивирования клеток. Последующие стадии клеточной пролиферации и дифференцировки выполняют, как описано на шаге 5. Анализ потребления кислорода проводится, когда клетки достигают слияния 80-100% и полностью дифференцированы, как сообщалось ранее19.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Мыши AdipoSPH были выведены путем разведения штаммов мышей SPH и Adipoq-Cre. Оба штамма мышей находились на гибридном фоне C57BL6J-DBA/2J (по данным коммерческого поставщика; см. Таблицу материалов). Линия мышей SPH была первоначально описана Zhou et al.14.

Развитие бежевых адипоцитов in vivo за счет сверхэкспрессии Prdm16, опосредованной AdipoSPH
Чтобы оценить способность модели, описанной в этом исследовании, развивать бежевые адипоциты in vivo, AAV, несущий sgRNA, нацеленный на ген Prdm16, был введен в iWAT мышей AdipoSPH. Prdm16 является хорошо известным транскрипционным фактором, определяющим развитие и функцию адипоцитов бежевогоцвета 20,21. Важно отметить, что здесь мы выбрали ранее протестированную и валидированную сгРНК, нацеленную на эндогенный ген Prdm1614. В качестве контроля использовали AAV, несущий пустую сгРНК. Через 10 дней после инъекции AAV iWAT собирали для гистологического анализа и анализа экспрессии генов (рис. 1A). Как и ожидалось, иммунофлуоресцентные изображения iWAT мышей AdipoSPH продемонстрировали экспрессию dCas9 как в контрольной группе, так и в группе Prdm16 (рис. 1B). Кроме того, экспрессия mCherry подтвердила успешность AAV-инфекции iWAT как в контрольной группе, так и в группе Prdm16 (рис. 1B). SPH-индуцированная экспрессия Prdm16 явно индуцировала широко распространенное накопление мультилокулярных бежевых адипоцитов в iWAT (рис. 1B). Кроме того, количественная ПЦР (кПЦР) выявила повышенную экспрессию Prdm16 и термогенной программы генов (Ucp1, Cox8b, Ppargc1a и Cidea) в группе Prdm16 по сравнению с контролем (рис. 1C).

Стимулирование развития бежевых адипоцитов и увеличение потребления кислорода in vitro за счет сверхэкспрессии Prdm16, опосредованной AdipoSPH
Далее была исследована пригодность этой модели для изучения биологии бежевых адипоцитов in vitro . С этой целью преадипоциты, полученные из iWAT мышей AdipoSPH, были трансдуцированы с помощью AAV, несущего последовательность сгРНК, нацеленную на Prdm16. Через семь дней после дифференцировки бежевые адипоциты использовали для анализа экспрессии генов и потребления кислорода (рис. 2А). В качестве контроля использовали пустую сгРНК. Стоит отметить, что удаление кодона STOP рекомбиназой CRE и активация аппарата SPH происходили под контролем промотора/энхансера адипонектина, что приводило к активации эндогенного гена Prdm16 в зрелых адипоцитах. Анализ экспрессии генов подтвердил повышенную экспрессию эндогенного гена Prdm16 и термогенных генов в группе сверхэкспрессии Prdm16 по сравнению с контролем (рис. 2B). Чтобы подтвердить, что SPH-индуцированные бежевые адипоциты были функционально термогенными, был проведен респирометрический анализ высокого разрешения на первичных адипоцитах. Анализ и интерпретация данных респирометрии были выполнены, как недавно описано22. SPH-индуцированная экспрессия Prdm16 приводила к более высокому базальному и максимальному потреблению кислорода, чем в контрольных клетках (рис. 2C). Важно отметить, что данные указывают на усиленное несвязанное дыхание (нечувствительное к олигомицину) в группе Prdm16 по сравнению с контрольной группой (рис. 2C, таблица 3). Взятые вместе, эти результаты показали, что SPH-индуцированная экспрессия эндогенного Prdm16 повторяет фенотип потемнения и увеличивает скорость потребления кислорода, наблюдаемую у обычных мышей Prdm16 Tg.

Figure 1
Рисунок 1: Развитие бежевого жира путем инъекции аденоассоциированного вируса (AAV), нацеленного на эндогенный ген Prdm16, в паховую белую жировую ткань (iWAT) мышей AdipoSPH. (A) Схематическая иллюстрация экспериментального дизайна бежевого адипоцита in vivo (созданного с использованием Biorender.com). (B) Гистологические (окрашивание гематоксилином и эозином [H&E]) изображения iWAT. Масштабная линейка = 50 мкм. (C) Количественная ПЦР (кПЦР) Prdm16 и термогенных генов (Ucp1, Cox8b, Ppargc1α и Cidea; n = 3). Данные представлены в виде среднего значения ± SEM. *p < 0,05; **p < 0,01 для Prdm16 по сравнению с контролем (CTR) по непарному t-критерию Стьюдента. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.

Figure 2
Рисунок 2: SPH-индуцированная дифференцировка бежевых адипоцитов сверхэкспрессией Prdm16. (A) Схематическая иллюстрация экспериментального дизайна бежевого адипоцита in vitro (созданного с использованием Biorender.com). (B) Относительная экспрессия генов Prdm16 и термогенных генов (Ucp1, Cox8b, Ppargc1α и Cidea; n = 3). (C) Норма потребления кислорода (OCR), n = 6. Данные представлены в виде среднего значения ± SEM. *p < 0,05; **p < 0,01; p < 0,001 для Prdm16 по сравнению с контролем (CTR) с помощью (B) непарного t-критерия Стьюдента и (C) двустороннего повторного измерения ANOVA, за которым следует тест Тьюки. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.

Дополнительный рисунок 1: Секвенирование сгРНК Prdm16 по Сэнгеру. (A) Схематическая иллюстрация, демонстрирующая выравнивание одноцепочечных комплементарных олигонуклеотидов Prdm16. (B) Секвенирование сгРНК Prdm16 по Сэнгеру с использованием универсального праймера. Пожалуйста, нажмите здесь, чтобы загрузить этот файл.

Ген Вид Вперёд Обратный
Экспрессия генов Прдм16 мышь CAGCACGGTGAAGCCATTC GCGTGCATCCGCTTGTG
УКП1 мышь TCTCAGCCGGCTTAATGACTG GGCTTGCATTCTGACCTTCAC
Ppargc1a мышь AGCCGTGACCACTGACAACGAG GCTGCATGGTTCTGAGTGCTAAG
Цог8б мышь GAACCATGAAGCCAACGACT GCGAAGTTCACAGTGGTTCC
Идея мышь ATCACAACTGGCCTGGTTACG TACTACCCGGTGTCCATTTCT
36Б4 мышь TCCAGGCTTTGGGCATCA CTTTATCAGCTGCACATCACTCAGA
Молекулярное клонирование Последовательность sgRNA Prdm16 мышь CGAGCTGCGCTGAAAAGGGG CCCCTTTTCAGCGCAGCTCG
Универсальная грунтовка мышь GAGGGCCTATTTCCCCC
ATGATTCCTTCATAT

Таблица 1: Последовательности праймеров, использованные в исследовании.

Терпимая Состав
Полная среда Модифицированная среда Eagle Medium (DMEM) от Dulbecco с L-глютамином
10% эмбриональной бычьей сыворотки (FBS)
2,5% пенициллина/стрептомицина
Индукционная среда Полная среда
Индометацин, конечная концентрация 125 мкМ (0,125 М в этаноле). ПРИМЕЧАНИЕ: Индометацин необходимо нагреть до 90 ° C в течение 10 секунд для растворения.
Инсулин, конечная концентрация 20 нМ (запас 1 мМ, добавьте 1 мкл HCl для солюбилизации (5,73 мг / мл). Хранить на складе при температуре -20 °C.
Дексаметазон, конечная концентрация 2 мкг/мл (2 мг/мл в этаноле)
3-Изобутил-1-метилксантин (IBMX), конечная концентрация 500 мкМ (0,25 М в 0,5 М КОН)
3,3',5-трийодо-L-тиронин (Т3), конечная концентрация 1 нМ (10 мкМ запас, растворить Т3 в 1 М HCl и EtOH 1:4 в запасе).
Росиглитазон, конечная концентрация 1 мкг/мл (1 мг/мл в этаноле)
Среда для технического обслуживания Полная среда
Инсулин, конечная концентрация 20 нМ (запас 1 мМ). Добавьте 1 мкл HCl для солюбилизации (5,73 мг / мл).
Росиглитазон, конечная концентрация 1 мкг/мл (1 мг/мл в этаноле)

Таблица 2: Состав сред, использованных в исследовании.

Параметры CTR ПРДМ16 p-значение
Отсутствие потребления кислорода митохондриями (пМоль/мин/мкг белка) 8.19 ± 1.40 10.80 ± 1.83 0.01
Базальное дыхание (рМоль/мин/мкг белка) 28.82 ± 5.20 52.58 ± 13.73 0.001
Максимальное дыхание (пМоль/мин/мкг белка) 63.81 ± 9.80 122.94 ± 22.31 < 0,001
Резервная дыхательная способность (пМоль/мин/мкг белка) 34.98 ± 11.09 70.36 ± 26.06 0.006
Олигочувствительность (пМоль/мин/мкг белка) 8.27 ± 2.29 15.85 ± 5.48 0.005
Олигочувствительный (пМоль/мин/мкг белка) 20.54 ± 5.68 36.72 ± 14.79 0.016
Эффективность сцепления 71.28 ± 1.51 69.84 ± 3.05 0.163
Сотовый RCR 7.70 ± 1.46 7.75 ± 2.43 0.485

Таблица 3: Респираторные параметры SPH-индуцированных бежевых адипоцитов.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

Одним из наиболее полезных нередактируемых применений технологии CRISPR является опрос функции генов путем активации эндогенных генов с использованием систем CRISPRa6. SPH — это мощный CRISPRa, который первоначально был описан как индуцирующий превращение астроцитов в активные нейроны путем нацеливания на несколько нейрогенных генов14. В этом исследовании было продемонстрировано, что AdipoSPH является подходящим инструментом для изучения биологии бежевого жира путем активации экспрессии эндогенного Prdm16 в адипоцитах. SPH-индуцированная сверхэкспрессия Prdm16 в адипоцитах приводит к активации термогенной генной программы и индуцирует фенотип потемнения, фенокопирование предыдущей трансгенной (Tg) моделиPrdm16 23. Prdm16 был выбран в этом исследовании в качестве мишени для индуцирования бежевых адипоцитов на основе центральной роли этого транскрипционного фактора в регуляции дифференцировки коричневого и бежевого жира, а также регуляции термогенной программы генов (например, усиление экспрессии Ucp1) в дифференцированных адипоцитах. Тем не менее, нынешняя модель допускает сверхэкспрессию любого эндогенного гена по усмотрению исследователей и цели исследования.

Традиционные трансгенные модели, исследующие биологию жировой ткани, основаны на развитии генетически модифицированных грызунов, сверхэкспрессирующих трансген под контролем промотора/энхансера, ограниченного адипоцитами (например, Fabp4 или адипонектин)24. Несмотря на то, что современные технологии ускорили темпы разработки этих моделей, затраты и время на их разработку по-прежнему являются общей проблемой, с которой сталкивается научное сообщество. Напротив, AdipoSPH является более дешевой и универсальной моделью для подходов к усилению функции, чем традиционные мыши Tg. Более того, AdipoSPH хорошо подходит для изучения длинных некодирующих изоформ РНК и транскриптов, которые не особенно подходят для моделей мышей Tg.

AdipoSPH также имеет ряд преимуществ в исследовании биологии жировой ткани по сравнению с простым введением AAV, современным альтернативным подходом для экспериментов по усилению функции25. Во-первых, AAV, доставленный в жировую ткань, способствует сверхэкспрессии, вводя несколько копий трансгена. Напротив, активация SPH эндогенных генов представляет собой более естественный механизм действия. Во-вторых, трансгены, доставляемые AAV (с использованием конститутивных промоторов), обычно приводят к их сверхэкспрессии в «любом типе клеток» в микроокружении жировой ткани. Напротив, AdipoSPH-индуцированная экспрессия эндогенных генов ограничена адипоцитами. В-третьих, размер упаковки (~ 4,5 кб) является типичным ограничением AAV для некоторых трансгенов26. Однако сгРНК, несущая AAV, требует простой и легкой стратегии клонирования для индивидуальных 20 нуклеотидов. Наконец, введение AAV обычно достигает системного кровообращения и заражает другие ткани и органы. Хотя некоторые AAV содержат микроРНК для смягчения экспрессии трансгенов в определенных тканях, таких как печень и сердце25, эта стратегия не может предотвратить инфекцию AAV в других тканях и органах. Напротив, индуцированная AdipoSPH экспрессия эндогенных генов ограничена адипоцитами, даже учитывая некоторую утечку AAV в системный кровоток. Таким образом, AdipoSPH также является подходящей моделью для системного введения сгРНК, несущей AAV, и исследования регуляции жировой ткани энергетического гомеостаза всего тела.

Хотя модель AdipoSPH предлагает некоторые преимущества, она имеет ограничения, которые важно учитывать. AAV в настоящее время является наиболее распространенной платформой для доставки sgRNA in vivo. Тем не менее, некоторые проблемы в производстве AAV и иммунологические вопросы остаются нерешенными26,27. Более того, различные количества и распределения инъецируемого AAV по всей жировой ткани приводят к внутри- и межтканевой вариабельности экспрессии генов. Мы считаем, что клонирование вектора sgRNA, производство AAV и гомогенное введение AAV в iWAT являются важными шагами для успеха этого протокола. Наконец, различные сгРНК отчетливо активируют экспрессию эндогенных генов в системе SPH14. Основная рекомендация состоит в том, чтобы разработать и протестировать от трех до пяти последовательностей сгРНК в пределах 200.н. выше по течению от сайта начала транскрипции (TSS) интересующего гена. Таким образом, определение наилучшей последовательности сгРНК для гена-мишени обычно требует трудоемких анализов in vitro перед экспериментами in vivo.

AdipoSPH также является привлекательной моделью для исследования других аспектов биологии жировой ткани. Например, адипоциты способствуют секреции многочисленных адипокинов28,29; Тем не менее, эффекты большинства этих молекул для всего организма остаются плохо изученными. AdipoSPH является подходящей моделью для решения этой проблемы путем сверхэкспрессии одного или нескольких эндогенных генов в зрелых адипоцитах и исследования их локальных или системных эффектов. Таким образом, AdipoSPH является уникальным инструментом для изучения биологии и физиологии жировой ткани.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Авторам раскрывать нечего.

Acknowledgments

Авторы благодарят за поддержку, полученную от Centro Multidisciplinar para Investigação Biológica na Área da Ciência em Animais de Laboratório (Cemib), Unicamp для создания мышей AdipoSPH, Лаборатории инммунометаболизма и клеточной сигнализации и Национального института науки и технологий по фотонике, применяемой к клеточной биологии (INFABIC) за всю экспериментальную поддержку. Мы благодарим Исследовательский фонд Сан-Паулу (FAPESP) за финансовую поддержку: 2019/15025-5; 2020/09308-1; 2020/14725-0; 2021/11841-2.

Materials

Name Company Catalog Number Comments
3,3',5-Triiodo-L-thyronine Sigma-Aldrich T2877
3-Isobutyl-1-methylxanthine Sigma-Aldrich I5879
AAVpro 293T Cell Line Takarabio 632273
Amicon Ultra Centrifugal Filter Merckmillipore UFC510008 100 KDa
Dexamethasone Sigma-Aldrich D1756
Dulbecco's Modification of Eagles Medium (DMEM) Corning 10-017-CV
Dulbecco's Modified Eagle Medium (DMEM) F-12, GlutaMAX™ supplement Gibco 10565-018 high concentrations of glucose, amino acids, and vitamins
Dulbecco's phosphate buffered saline (DPBS) Sigma-Aldrich D8662
Excelta Self-Opening Micro Scissors Fisher Scientific 17-467-496
Fetal bovine serum Sigma-Aldrich F2442
Fisherbrand Cell Scrapers (100 pk) Fisher Scientific 08-100-241
Fisherbrand High Precision Straight Tapered Ultra Fine Point Tweezers/Forceps Fisher Scientific 12-000-122
Fisherbrand Sharp-Pointed Dissecting Scissors Fisher Scientific 08-940
Glycerol Sigma-Aldrich G5516
HEPES Sigma-Aldrich H3375-25G
Hexadimethrine bromide (Polybrene) Sigma-Aldrich H9268
Indomethacin Sigma-Aldrich I7378
Insulin Sigma-Aldrich I9278
LigaFast Rapid DNA Ligation System Promega M8225
Maxiprep purification kit  Qiagen 12162
Microliter syringe Hamilton 80308 Model 701
NEB 10-beta/Stable  New England Biolabs C3019H E. coli competent cells
pAAV2/8  Addgene  112864
pAAV-U6-gRNA-CBh-mCherry Addgene  91947
pAdDeltaF6  Addgene  112867
PEG 8000 Sigma-Aldrich 89510
Penicillin/streptomycin Gibco 15140-122
Polyethylenimine Sigma-Aldrich 23966 Linear, MW 25000
Povidone-iodine Rioquímica 510101303 Antiseptic
Rosiglitazone Sigma-Aldrich R2408
SacI enzyme New England Biolabs R0156
Surgical Design Premier Adson Forceps Fisher Scientific 22-079-741
Syringe Hamilton 475-40417
T4 DNA Ligase Promega M180B
T4 DNA ligase buffer  New England Biolabs B0202S
T4 PNK enzyme kit New England Biolabs M0201S
Tramadol Hydrochloride SEM 43930
Vidisic Gel  Bausch + Lomb  99620

DOWNLOAD MATERIALS LIST

References

  1. Wang, W., Seale, P. Control of brown and beige fat development. Nature Reviews Molecular Cell Biology. 17 (11), 691-702 (2016).
  2. Wu, J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150 (2), 366-376 (2012).
  3. Cohen, P., Kajimura, S. The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology. 22 (6), 393-409 (2021).
  4. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  5. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339 (6121), 823-826 (2013).
  6. Dominguez, A. A., Lim, W. A., Qi, L. S. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology. 17 (1), 5-15 (2016).
  7. Gilbert, L. A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154 (2), 442-451 (2013).
  8. Perez-Pinera, P., et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods. 10 (10), 973-976 (2013).
  9. Konermann, S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517 (7536), 583-588 (2015).
  10. Gilbert, L. A., et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159 (3), 647-661 (2014).
  11. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 159 (3), 635-646 (2014).
  12. Chavez, A., et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods. 12 (4), 326-328 (2015).
  13. Chavez, A., et al. Comparison of Cas9 activators in multiple species. Nature Methods. 13 (7), 563-567 (2016).
  14. Zhou, H., et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nature Neuroscience. 21 (3), 440-446 (2018).
  15. Fripont, S., Marneffe, C., Marino, M., Rincon, M. Y., Holt, M. G. Production, purification, and quality control for adeno-associated virus-based vectors. Journal of Visualized Experiments. (143), e58960 (2019).
  16. Negrini, M., Wang, G., Heuer, A., Björklund, T., Davidsson, M. AAV production everywhere: a simple, fast, and reliable protocol for in-house aav vector production based on chloroform extraction. Current Protocols in Neuroscience. 93 (1), 103 (2020).
  17. Aune, U. L., Ruiz, L., Kajimura, S. Isolation and differentiation of stromal vascular cells to beige/brite cells. Journal of Visualized Experiments. (73), e50191 (2013).
  18. Wang, Q., et al. Post-translational control of beige fat biogenesis by PRDM16 stabilization. Nature. 609 (7925), 151-158 (2022).
  19. Oeckl, J., Bast-Habersbrunner, A., Fromme, T., Klingenspor, M., Li, Y. Isolation, culture, and functional analysis of murine thermogenic adipocytes. STAR Protocols. 1 (3), 100118 (2020).
  20. Cohen, P., et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 156 (1-2), 304-316 (2014).
  21. Harms, M., Seale, P. Brown and beige fat: development, function and therapeutic potential. Nature Medicine. 19 (10), 1252-1263 (2013).
  22. Divakaruni, A. S., Jastroch, M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nature Metabolism. 4 (8), 978-994 (2022).
  23. Seale, P., et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of Clinical Investigation. 121 (1), 96-105 (2011).
  24. Valet, P., Tavernier, G., Castan-Laurell, I., Saulnier-Blache, J. S., Langin, D. Understanding adipose tissue development from transgenic animal models. Journal of Lipid Research. 43 (6), 835-860 (2002).
  25. Bates, R., Huang, W., Cao, L. Adipose tissue: an emerging target for adeno-associated viral vectors. Molecular Therapy. Methods & Clinical Development. 19, 236-249 (2020).
  26. Wang, D., Tai, P. W. L., Guangping, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery. 18 (5), 358-378 (2019).
  27. Colella, P., Ronzitti, G., Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Molecular Therapy. Methods & Clinical Development. 8, 87-104 (2018).
  28. Deshmukh, A. S., et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metabolism. 30 (5), 963-975 (2019).
  29. Sponton, C. H., et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO reports. 21 (9), 49828 (2020).

Tags

В этом месяце в JoVE выпуск 191 жировая ткань термогенез метаболизм CRISPR
Исследование биологии и метаболизма бежевого жира с использованием системы активации CRISPR SunTag-p65-HSF1
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Valdivieso-Rivera, F. B., deMore

Valdivieso-Rivera, F. B., de Oliveira Furino, V., Sponton, C. H. Investigation of Beige Fat Biology and Metabolism Using the CRISPR SunTag-p65-HSF1 Activation System. J. Vis. Exp. (191), e64849, doi:10.3791/64849 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter