This protocol aims to demonstrate how to combine in vitro microelectrode arrays with microfluidic devices for studying action potential transmission in neuronal cultures. Data analysis, namely the detection and characterization of propagating action potentials, is performed using a new advanced, yet user-friendly and freely available, computational tool.
Microelectrode arrays (MEAs) are widely used to study neuronal function in vitro. These devices allow concurrent non-invasive recording/stimulation of electrophysiological activity for long periods. However, the property of sensing signals from all sources around every microelectrode can become unfavorable when trying to understand communication and signal propagation in neuronal circuits. In a neuronal network, several neurons can be simultaneously activated and can generate overlapping action potentials, making it difficult to discriminate and track signal propagation. Considering this limitation, we have established an in vitro setup focused on assessing electrophysiological communication, which is able to isolate and amplify axonal signals with high spatial and temporal resolution. By interfacing microfluidic devices and MEAs, we are able to compartmentalize neuronal cultures with a well-controlled alignment of the axons and microelectrodes. This setup allows recordings of spike propagation with a high signal-to-noise ratio over the course of several weeks. Combined with specialized data analysis algorithms, it provides detailed quantification of several communication related properties such as propagation velocity, conduction failure, firing rate, anterograde spikes, and coding mechanisms.
This protocol demonstrates how to create a compartmentalized neuronal culture setup over substrate-integrated MEAs, how to culture neurons in this setup, and how to successfully record, analyze and interpret the results from such experiments. Here, we show how the established setup simplifies the understanding of neuronal communication and axonal signal propagation. These platforms pave the way for new in vitro models with engineered and controllable neuronal network topographies. They can be used in the context of homogeneous neuronal cultures, or with co-culture configurations where, for example, communication between sensory neurons and other cell types is monitored and assessed. This setup provides very interesting conditions to study, for example, neurodevelopment, neuronal circuits, information coding, neurodegeneration and neuroregeneration approaches.
Understanding electrical communication in neuronal circuits is a fundamental step to reveal normal function, and devise therapeutic strategies to address dysfunction. Neurons integrate, compute and relay action potentials (APs) which propagate along their thin axons. Traditional electrophysiological techniques (e.g., patch clamp) are powerful techniques to study neuronal activity but are often limited to the larger cellular structures, such as the soma or the dendrites. Imaging techniques offer an alternative to study axonal signals with high spatial resolution, but they are technically difficult to perform and do not allow long-term measurements1. In this context, the combination of microelectrode arrays (MEAs) and microfluidics can make a powerful contribution in disclosing the fundamental properties of neuron´s activity and signal transmission within neuronal networks in vitro2,3.
MEA technology relies on extracellular recordings of neuronal cultures. The main advantages of this electrophysiological methodology are its ability to support long-term, simultaneous stimulation and recording at multiple sites and in a non-invasive way3. MEAs are made of biocompatible, high conductive and corrosion resistant microelectrodes embedded in a glass wafer substrate. They are compatible with conventional cell culture bio-coatings, which by promoting cell adhesion significantly increase the sealing resistance between the substrate and cells3,4. Moreover, they are versatile in design and may vary in microelectrodes size, geometry and density. Overall, MEAs work as conventional cell culture vessels with the advantage of allowing concurrent live-imaging and electrophysiological recordings/stimulation.
The use of MEA technology has contributed to the study of important features of neural networks5. However, there are inherent features that limit the performance of MEAs for studying communication and APs propagation in a neuronal circuit. MEAs enable recordings from single cells and even subcellular structures like axons, but when compared to somal signals, axonal signals have a very low signal-to-noise ratio (SNR)6. Moreover, the characteristic of sensing extracellular field potentials from all sources around every microelectrode hampers the tracking of signal propagation in a neuronal circuit.
Recent studies have demonstrated, however, that better recording conditions can be achieved by having the microelectrodes aligned within narrow microchannels into which axons can grow. This configuration provides a significant increase in the SNR such that propagating axonal signals can be easily detected7,8,9,10,11,12,13. The strategy of allying microfluidic devices with MEA technology creates an electrically isolated microenvironment suitable to amplify axonal signals11. Moreover, the presence of multiple sensing microelectrodes along a microgroove is fundamental for detection and characterization of axonal signal propagation.
Such in vitro platforms with highly controllable neuronal network topographies can be adapted to many research questions14. These platforms are suitable to be used in the context of neuronal cultures but can be expanded to engineer co-culture configurations, where the communication between neurons and other cell types can be monitored and assessed. This setup thus provides very interesting conditions to explore a number of neural-related studies such as neurodevelopment, neuronal circuits, information coding, neurodegeneration and neuroregeneration. Furthermore, its combination with emerging models of human induced pluripotent stem cells15,16 can open new avenues in the development of potential therapies for human diseases that affect the nervous system.
Our lab is using this platform combining microelectrodes with microfluidics (µEF) to understand neuronal processes at the cellular and network level and their implication in the physio- and pathologic nervous system. Given the value of such platform in the field of neuroscience, the purpose of this protocol is to demonstrate how to create a compartmentalized neuronal culture over substrate-integrated MEAs, how to culture neurons in this platform and how to successfully record, analyze and interpret the results from such experiments. This protocol will certainly enrich the experimental toolbox for neuronal cultures in the study of neural communication.
All procedures involving animals were performed according to the European Union (EU) Directive 2010/63/EU (transposed to Portuguese legislation by Decreto-Lei 113/2013). The experimental protocol (0421/000/000/2017) was approved by the ethics committee of both the Portuguese Official Authority on animal welfare and experimentation (Direção-Geral de Alimentação e Veterinária – DGAV) and of the host Institution.
1. Preparation of Culture Media and Other Solutions
NOTE: Freshly prepare the coating solutions on the day of its use. The unused coating solutions and culture media may be stored at -20 °C or 4 °C as detailed below.
2. Microfluidic and MEA Devices Preparation
NOTE: Perform steps 2.1-2.11 on the day before cell seeding.
3. Prefrontal Cortex Dissection
4. Cortical Neurons Dissociation and Culture on µEF
NOTE: The following procedures were performed inside a laminar flow hood after a 15 min cycle of UV sterilization. Working surface area as well as all the materials placed inside the hood should be previously disinfected with 70% ethanol.
5. Recording Spontaneous Neuronal Activity
NOTE: Embryonic cortical neuron cultures on MEAs typically exhibit spontaneous activity as soon as 7 days in vitro (DIV), but take 2-3 weeks (14-21 DIV) to mature and exhibit stable activity. It is up to the experimenter to decide when to start the electrophysiological measurements based on the objectives of the study. In this protocol, the recording of neuronal activity from µEF is demonstrated by using a commercial recording system (see Table of Materials for hardware details), with a heating module incorporated. For performing recordings, we used a freely available software (see Table of Materials for software details).
6. Data Analysis
NOTE: The following steps show how to use the µSpikeHunter software, a computational tool developed at Aguiar's lab (freely available upon email request to pauloaguiar@ineb.up.pt), to analyze data recorded with µEF. A graphical user interface (Figure 2) is used to load the data, identify propagating spike waves, determine their direction (anterograde or retrograde) and estimate propagation velocities. µSpikeHunter is compatible with HDF5 files generated from recordings obtained using MEA2100-family systems, which can be used in conjunction with 60-, 120-, and 256-electrode MEAs. The recordings obtained using the multi-channel experimenter can be easily converted to HDF5 files using freely available software (see Table of Materials).
Using the protocol described here, E-18 rat cortical neurons seeded on µEF are able to develop and remain healthy in these culture conditions for over a month. As soon as 3 to 5 days in culture, cortical neurons grow their axons through microgrooves towards the axonal compartment of µEF (Figure 1). After 15 days in culture, cortical neurons cultured on µEF are expected to exhibit steady levels of activity and propagation of action potentials along the microgrooves is expected. Older cultures (>14 DIV) tend to be dominated by bursting activity as in conventional MEA recordings18,19.
Recordings and data analysis
Raw data analysis with µSpikeHunter (Figure 2) permitted the detection and extraction of propagating spike waves along sets of 4 microelectrodes (within microgrooves). Figure 3 displays one of these events. µSpikeHunter allowed for the estimation of propagation velocities, based on the cross-correlations between the voltage waveforms of selected pairs of microelectrodes (providing a time delay) and the associated known inter-electrode distance.
The extracted data was further analyzed using custom designed code in MATLAB. A representative raster plot of the propagating spike waves along 11 (out of 16) microgrooves is shown in Figure 4a. The instantaneous firing rate for a high- and a low-activity microgroove is shown in Figure 4b.
µEF recordings exhibit varying levels of activity per microelectrode. Frequently, several microelectrodes in the somal compartment are "silent". However, most microelectrodes within microgrooves tend to be active (Figure 5a). It is well described that the microgrooves function as signal amplifiers8. The amplitude of a recorded signal depends not only on the size of the source currents, but also on the resistivity of the surrounding media. The resistance along a microgroove is particularly high, which greatly increases the amplitude of the measured signals in comparison to those of the microelectrodes in the somal compartment (Figure 5b).
Figure 1. Embryonic rat cortical neurons cultured on µEF. (a) Photograph of µEF. Scale bar: 1 cm. (b) Representative image of cortical neurons cultured in the µEF for 5 days, showing several axons crossing the microgrooves and reaching the axonal compartment (arrows). Scale bar: 100 µm. Please click here to view a larger version of this figure.
Figure 2. Screen capture of the µSpikeHunter main graphical user interface. The user can load the data recorded with µEF, identify propagating spike waves, determine their direction (anterograde or retrograde) and estimate propagation velocities. A kymograph tool allows the user to manually estimate the propagation velocity based on a line drawn on the kymograph. Please click here to view a larger version of this figure.
Figure 3. Anterograde propagating spike wave sensed by 4 microelectrodes (E8-E11) within a microgroove. Each trace represents one microelectrode raw recording for 3 ms. After analysis with µSpikeHunter, the cross-correlation between the farthest microelectrodes (E8 and E11) permitted the calculation of a propagation velocity of 0.52 m/s. Please click here to view a larger version of this figure.
Figure 4. Information barrage through the microgrooves.(a) Representative raster plot of 2 minutes of spontaneous activity recorded along 11 microgrooves. Each dot represents a propagating spike wave (unit) sensed by 4 microelectrodes and identified through the analysis with µSpikeHunter. A high- and a low-activity microgroove are highlighted in yellow and red, respectively. (b) Evolution of the instantaneous firing rate (as in rate-coding) for the two highlighted microgrooves along 10 minutes. Only propagating units were considered for the calculation of the firing rate. Note the activity synchronization, despite the different firing rate levels. The instantaneous firing rate was calculated convolving the spike events with a Gaussian kernel with a standard deviation of 100 ms. Please click here to view a larger version of this figure.
Figure 5. Quality of extracellular recordings in µEF. (a) Time window (1 second) of a µEF recording (rat cortical neurons at 15 days in vitro) with a sampling rate of 20 kHz and a high-pass filter at 300 Hz. Electrode rows 1-7 correspond to the somal compartment and rows 8-11 to the microgrooves. (b) Box and whisker plot of the full range of spike amplitudes extracted (spikes detected using a threshold method, with negative phase only, set at 6x standard deviation) from the specified rows (total recording time of 10 minutes). The spikes' amplitudes are significantly larger in the microelectrodes within microgrooves (rows 8-11; 16 microgrooves), when compared to the microelectrodes of the somal compartment (rows 1-7; 16 active microelectrodes). One-way ANOVA, Dunn's multiple comparison tests, ****p <0.0001. Please click here to view a larger version of this figure.
The protocol presented here shows how to assemble a µEF, comprised of a microfluidic device and a MEA with standard commercially-available designs, and how to analyze the recorded data.
When designing an experiment, researchers must take into account that the in vitro model is limited by the MEA fixed grid, which constrains microgroove arrangements. The use of a particular microfluidic or MEA design will depend on the specific experimental needs but, in general, the same procedure steps should apply to different µEF configurations.
A critical decision to be made before µEF assembly is whether the user intends to reuse the assembled µEF in future experiments. Treatment with oxygen plasma on both surfaces can be done to covalently bond microfluidic devices to MEAs20. However, this sealing often makes the MEA chips unusable for further experiments, as detaching the microfluidic device irreversibly damages the passivation layer. To circumvent this problem, research groups tend to reuse the mounted µEF, despite the possible drawbacks (e.g., debris from previous experiments). By carefully following the steps outlined in this protocol, from experiment to experiment, one can safely attach and detach microfluidic devices without damaging the MEA.
The use of µEF allows the isolation of a set of axons within the microgrooves. The time required for a reasonable number of axons to cross the microgrooves will greatly depend on the cell seeding procedure, namely seeded cell density. Using the density specified in this protocol, neurons use to cross the whole microgroove within 3 to 5 DIV.
Depending on the culture environment (i.e., incubator and humidity level), it may be required to replace media every 2 to 3 days of culture. When renewing media, remove the media from µEF wells while maintaining media within the main channels. Then, gently add media to the µEF wells allowing it to slowly flow through the main channels before filling up the wells with final media volume. Following these recommendations, we are able to maintain these cultures in healthy conditions for at least a month.
A key advantage of this platform is the ability to isolate, measure and track axonal signals. Although the µEF recording is simple, the great amount of data that can be generated is cumbersome to handle and requires good knowledge of data analysis. The analysis software used here, µSpikeHunter21, is an advanced yet intuitive computational tool, which allows for the detailed quantification of several related measures (e.g., propagating events, propagation velocity etc.) in a few steps. Although data analysis is not the focus of this protocol, the information here provided already allows the extraction of meaningful data from a µEF recording. However, it is important to note that the reliable isolation of a single axon per microgroove remains impracticable. Thus, very complex spike waveforms (due to multiple axons passing through the microgroove) may arise and affect the spike timings and propagation velocity calculations. This limitation can be attenuated by using very narrow microgrooves (below 5 µm)13 and/or through spike sorting techniques21, which help distinguish different signal sources.
Even though in vitro cultures cannot recapitulate the full in vivo complexity, their combination with µEF enables well-controlled bottom-up research approaches. We hope this protocol will help both beginners and proficient MEA users establishing new and reliable models for studying electrophysiological communication in neuronal circuits.
The authors have nothing to disclose.
This work was financed by FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project PTDC/CTM-NAN/3146/2014 (POCI-01-0145-FEDER-016623). José C Mateus was supported by FCT (PD/BD/135491/2018). Paulo Aguiar was supported by Programa Ciência – Programa Operacional Potencial Humano (POPH) – Promotion of Scientific Employment, ESF and MCTES and program Investigador FCT, POPH and Fundo Social Europeu. The microfluidic devices were fabricated at INESC – Microsystems and Nanotechnologies, Portugal, under the supervision of João Pedro Conde and Virginia Chu.
B-27 Suplement (50X) | Thermo Fisher Scientific | LTI17504-044 | |
Branched poly(ethylene imine) (PEI), 25 kDa | Sigma-Aldrich | 408727 | Purify branched PEI by dialysis using a 2.5 kDa cut-off membrane for 3 days at 4°C against a 5 mM HCl solution (renewed daily). Freeze-dry the purified PEI. |
Cell strainer (40 µm) | Falcon | 352340 | |
Conical microtubes (1.5 ml) | VWR | 211-0015 | |
Disposable diaper, 60×40 cm | Bastos Viegas SA | 455-019 | |
Forceps Dumont #5, straight | Fine Science Tools | 91150-20 | |
Forceps Dumont #5/45 | Fine Science Tools | 11251-35 | |
Forceps Dumont #7, curved | Fine Science Tools | 91197-00 | |
Heat Inactivated Fetal Bovine Serum Premium | Biowest | S181BH-500ML | |
Laminin from Engelbreth-Holm-Swarm | Sigma-Aldrich | L2020-1MG | Prepare laminin stock solution at 1 mg/mL by dissolving the powder in the respective volume of non-supplemented medium. Store laminin solution at -20 °C in small aliquots (20 µL) to avoid repeated freeze/thaw cycles. |
L-Glutamine 200mM | Thermo Fisher Scientific | LTID25030-024 | |
Neubauer improved counting chamber (hemocytometer) | Marienfeld | 630010 | |
Neurobasal Medium (1X) | Thermo Fisher Scientific | 21103-049 | Basal medium used for neuronal cultures |
PDMS microfluidic devices | not applicable | not applicable | Composed of two cell seeding compartments interconnected by 20 microgrooves with 450 μm length × 10 μm height × 14 μm width dimensions and separated by 86 µm (total interspace of 100 μm). |
Penicillin-streptomycin (P/S) solution (100X) | Biowest | L0022-100 | |
PES syringe filter unit (Ø 30 mm), 0.22 µm | Frilabo | 1730012 | |
Polypropylene conical tubes, 15 ml | Thermo Fisher Scientific | 07-200-886 | |
Polypropylene conical tubes, 50 ml | Thermo Fisher Scientific | 05-539-13 | |
Polystyrene disposabel serological pipets, 10 ml | Thermo Fisher Scientific | 1367811D | |
Polystyrene disposabel serological pipets, 5 ml | Thermo Fisher Scientific | 1367811D | |
Standard Regenerated cellulose membrane (2 kDa) | Spectrum labs | 132107 | |
Standard surgical scissor | Fine Science Tools | 91401-14 | |
Substrate-integrated planar MEAs (256 microelectrodes) | Multi Channel Systems | 256MEA100/30iR-ITO | 252 titanium nitride (TiN) recording electrodes and 4 internal reference electrodes organized in a 16 by 16 square grid. Each recording electrode is 30 µm in diameter and interspaced by 100 µm. |
Syringe luer-lock tip, 10 ml | Terumo Europe | 5100-X00V0 | |
Syringe luer-lock tip, 50 ml | Terumo Europe | 8300006682 | |
Terg-A-Zyme | Sigma-Aldrich | Z273287 | Enzyme-active powdered detergent used for MEAs cleaning |
Tissue culture plates, 35 mm | StemCell Technologies | 27150 | |
Tissue culture plates, 90 mm | Frilabo | 900095 | |
Trypan Blue solution (0.4%) | Sigma-Aldrich | T8154 | |
Trypsin (1:250) | Thermo Fisher Scientific | 27250018 | |
Vinyl tape 471 | 3M | B40071909 |