资料来源: 实验室的尼古拉 Noles 和朱迪思 Danovitch — — 路易斯维尔大学
现代教育体系的目标之一就是要教孩子们数学识字。他们被教导要添加,减去,乘除,和这方面的基础知识用来支持学习关于几何、 代数、 微积分、 物理和统计。学龄期儿童通常获得这些技能在正式的教育环境,但数学理解的基础开发早得多的生活。
作为婴儿,人类开始形成粗糙的表示形式,允许他们对数量,做出判断和人类发展的第一个数值概念也许是少与更多的想法。然而,探讨这些概念可以很困难,因为即使婴儿有多一些了解,他们有的炫耀他们知道的很少方式。他们能做什么是爬、 吃饭、 哭泣,睡觉。因此,研究人员开发出利用这组有限的反应调查是否婴儿弱智可以表示数量的任务。
本实验演示如何研究人员可以创造性地使用食物来研究婴儿使用的方法 Feigenson,凯里及豪泽的数学认知的概念。1
招聘 12 个月大的婴儿。对于本演示的目的,测试只有一个孩子。较大的样本大小 (如 Feigenson、 凯里和豪瑟研究1) 建议时进行任何实验。
1.数据收集
2.分析
在生活中很早 — — 在 1 岁之前 — — 人类发展的数值数量,称为数值认知的数学理解的基础。
若要生成此基础上,婴儿开始形式粗糙的心理表征,使他们能够做出一些判断和发展与更少的概念。
然而,探测数值认知这些概念很难。因此,研究者必须创造性地设计任务通过使用诱人的对象,如玩具或食物,由于有限的一组响应 — — 像爬行 — — 在婴儿。
使用由博士 Feigenson,凯里和同事们开发的方法,该视频演示了如何设置和测试数值认知的婴儿,以及如何分析和解释有关判断之间食品项目数量的数据。
在这个实验中,12 个月大的婴儿观看研究员地方吸引人格雷厄姆饼干,一次,一个到两个不同的不透明容器。饼干放入每一个数目取决于分配的条件: 1 与 2、 3 和 3 与 4 与 2。
婴儿被允许爬到那两个人,一个和容器的选择是因变量。
如果婴儿是能够代表数量,他们预计将由爬到那个容器选择那个最饼干。然而,由于他们的年龄,它们的能力区分五个以上可能有一定限制,在这种情况下他们会随机选择一个容器。
婴儿的到来之前, 确保视频设备的正常运作和收集一空的小桶,另一个充满全麦饼、 玩具和两个高大的不透明容器。
开始实验,迎接婴儿,让他们坐在地板上,你坐了他们所面临的 100 厘米。一旦解决,已启动摄像机来记录会议助理。
首先适应婴儿爬行向容器: 当看了婴儿,将玩具放在空桶内和非口头鼓励它们爬行和检索的玩具。他们爬到玩具后,删除它和水桶,将婴儿放回至起始位置。
要启动的测试阶段,同时介绍了两个大型集装箱和表明婴儿,他们是空。容器在婴儿面前 70 厘米,35 厘米分开,确保他们不能在同一时间达到两个容器放置。
检索全麦饼小桶。撑起一个饼干,说”看看这”。当看了婴儿时,将饼干放入容器。继续此过程,直到这两个容器有适当数量的饼干为给定的条件。
放置所有的饼干,看下来后避免影响婴儿的反应的选择的容器。不看了,口头上鼓励他们选择一个容器,在 10 秒后:”这边走”。
完成测试阶段后,有两个独立的程序员是盲的条件查看视频的录制和记空房的容器,每个婴儿。
分析结果,计算的选择与更多的饼干容器的婴儿数和图的每个条件的结果百分比。
请注意,婴儿是非常善于与条件 1、 2 及 2 与 3,对比的更大数量的容器,但执行接近机会水平状况 3 与 4,这表明上限为 12 个月这个年龄数值表示形式。
既然你已经熟悉用于测试的概念,与更多的婴儿较少的方法,让我们看的出现在其他物种中的数字推理和数学认知在数学能力的重要性。
可以用一个非常类似的实验设置来探索数值认知的其他动物,如狗。
比较其他物种之间的数值能力 — — 像鸟选择更多的食物和孔雀鱼加入更大的社会群体 — — 将添加到为数值的权限,在缺乏语言的个体的理解。
表示数字和作比较的多与少表明,婴儿可以推断他们的环境中复杂的方式。这种早期技能可能出现后来在数字推理和数学运算的能力,如加法、 减法和甚至微积分的发展作出贡献。
你刚看了朱庇特的简介数值的认知。现在你应该很好地理解如何设计和运行实验调查如何婴儿代表数目和数量,以及如何分析和评估结果。
谢谢观赏 !
为了能看到显著的效果,研究人员就必须在每个情况下,不包括婴儿下降未能完成任务测试至少 16 个婴儿。提出了一种以 1 与 2 的饼干和 2 3 块饼干与通常的婴儿选择包含更多饼干(图 1)的容器。然而,婴儿通常表现出容器内有更多的饼干,当带有 3 与 4 饼干没有强烈的偏好。
婴儿一直选择包含更多的饼干时提出了一种以比较 1 与 2 和 3 与 2 的容器。然而,婴儿不能代表更大数量的项目之间的差异。至关重要的是,这一结果不只依赖于比例,因为婴儿也无法区别 3 与 6,即 1 与 2 的比例相同。
图 1:选择与更多的饼干容器的婴儿的比例。
虽然婴儿受到限制的对象数目他们可以代表任何给定的时间,事实上他们可以表示 2 与 3,或最多五个项目,一次引为证据甚至非常年幼的婴儿能够代表数和表达不同值之间的比较。这里介绍的方法也可以适用于测定如何其他的物种,如狗和黑猩猩,关于数的原因。
婴儿都赫然能够代表人数和进行比较的多与少在很年轻的时候。在这里报告的结果表明,婴儿可以推断他们的环境中复杂的方式,这种早期技能可能出现的数字推理和数学能力以后的发展作出贡献。然而,是正在进行的辩论,关于这些代表性的技能是否表明真正的数学理解,或如果他们更适当考虑的可视表示形式。
Very early in life—before the age of 1—humans develop a foundation in the mathematical understanding of numerical quantities, called numerical cognition.
To build this foundation, infants begin to form rough mental representations that allow them to make judgments about number and develop the concept of less versus more.
However, probing these concepts of numerical cognition can be difficult. Thus, researchers must be creative in designing tasks by using alluring objects, such as toys or food, due to the limited set of responses—like crawling—in infants.
Using the method developed by Drs. Feigenson, Carey, and colleagues, this video demonstrates how to setup and test numerical cognition in infants, as well as how to analyze and interpret the data regarding judgments between quantities of food items.
In this experiment, 12-month-old infants watch the researcher place appealing graham crackers, one at a time, into two different opaque containers. The number of crackers placed into each one varies, depending on the assigned condition: 1 vs. 2, 2 vs. 3, and 3 vs. 4.
The infants are allowed to crawl to one of the two, and the choice of container is the dependent variable.
If infants are able to represent number, they are expected to choose the one with the most crackers by crawling to that container. However, due to their age, there may be a limit in their capacity to discriminate more than five, in which case they would choose a container at random.
Before the arrival of the infant, ensure the proper functioning of the video equipment and collect one empty small bucket and another filled with graham crackers, a toy, and two tall opaque containers.
To begin the experiment, greet the infant and have them sit on the floor while you sit 100 cm away facing them. Once settled, have an assistant start the video camera to record the session.
First acclimate the infant to crawling towards a container: when the infant is looking, place the toy inside the empty bucket and non-verbally encourage them to crawl and retrieve the toy. After they crawl to the toy, remove it and the bucket and place the infant back to the starting position.
To initiate the test phase, simultaneously introduce the two large containers and show the infant that they are empty. Place the containers 70 cm in front of the infant and 35 cm apart, ensuring that they cannot reach both containers at the same time.
Retrieve the small bucket of graham crackers. Hold up one cracker and say “Look at this.” When the infant is looking, place the cracker into a container. Continue this process until both containers have the appropriate number of crackers for the given condition.
After placing all crackers, look down to avoid influencing the infant’s response of choosing a container. Without looking up, verbally encourage them to pick a container after 10 seconds: “Come this way.”
Once the test phase is completed, have two independent coders who are blind to the conditions view the video recordings and make note of the chosen container for each infant.
To analyze the results, count the number of infants that chose the container with the greater number of crackers and graph the resulting percentages for each condition.
Notice that infants were very good at picking the container with the greater quantity for conditions 1 vs. 2 and 2 vs. 3, but performed near chance level in condition 3 vs. 4, suggesting that there is an upper limit to numerical representation at this age of 12 months.
Now that you are familiar with the methods used to test the concept of less vs. more in infants, let’s look at the emergence of numerical reasoning in other species and the importance of numerical cognition in mathematical ability.
A very similar experimental setup can be used to explore numerical cognition in other animals, such as dogs.
Comparisons in numerical abilities between other species—like birds choosing more food and guppies joining larger social groups—add to the understanding of the ontogeny for numerical competence in the absence of language.
Representing number and making comparisons of more versus less show that infants can reason about their environment in sophisticated ways. This early skill may contribute to the emergence later in development of numerical reasoning and mathematical ability such as addition, subtraction, and even calculus.
You’ve just watched JoVE’s introduction to numerical cognition. Now you should have a good understanding of how to design and run an experiment investigating how infants represent number and quantity, as well as how to analyze and assess the results.
Thanks for watching!
Related Videos
Developmental Psychology
54.1K 浏览
Developmental Psychology
10.1K 浏览
Developmental Psychology
54.2K 浏览
Developmental Psychology
15.0K 浏览
Developmental Psychology
32.9K 浏览
Developmental Psychology
13.1K 浏览
Developmental Psychology
10.4K 浏览
Developmental Psychology
15.0K 浏览
Developmental Psychology
5.3K 浏览
Developmental Psychology
5.2K 浏览
Developmental Psychology
61.1K 浏览
Developmental Psychology
5.6K 浏览
Developmental Psychology
6.3K 浏览
Developmental Psychology
14.3K 浏览
Developmental Psychology
10.9K 浏览