资料来源:佩尔切特·蒂鲍特1,2,3,穆尼尔·西尔万1,2,3,苏菲·诺沃4,雷切尔·戈卢布1,2,3
1淋巴病系,法国巴黎巴斯德研究所免疫学系
2 INSERM U1223, 巴黎, 法国
3巴黎迪德罗大学,索邦巴黎城,大提琴巴斯德,巴黎,法国
4流式细胞测定,细胞学和生物标志物 UtechS,转化科学中心,巴斯德研究所,法国巴黎
细胞周期是一个普遍的生命过程。在细胞周期中,细胞经历几次修改,以分成两个子细胞。这种机制发生在生物体的整个生命中,以响应其需求。细胞分裂和胚胎发育从单细胞酶中产生完整的生物体。在成年期间,细胞周期是许多关键生物过程的核心,如组织修复。
细胞分裂机制是严格控制的事件,细胞在最终分裂前进行逐步修改。尚未处于循环中的细胞被描述为处于 Gap 0 (G0) 阶段。在此阶段,细胞被认为是静止的。当细胞开始循环时,四个不同的相位被识别:间隙1(G1),合成(S),间隙2(G2)和米托西斯(M)。G1相是细胞DNA合成所需资源的检查点。然后,S 相发生,DNA 复制开始,然后是G2相间,另一个检查点控制细胞分裂所需的所有元素。最后,细胞进入米细胞,并分裂成两个子细胞。
细胞分裂是许多不同生物系统中信息丰富的参数。在免疫学领域,白细胞增殖分析可以说明免疫反应机制。其他调查领域也依赖于细胞周期分析。例如,对肿瘤发育过程中的细胞周期的分析提高了我们对癌症的理解。
许多荧光染料现在可用于跟踪细胞增殖。这些染料的化学和光谱特性不同。存在两种不同类别的染料:蛋白质染料通过形成共价键与蛋白质永久结合,膜染料通过强疏水性关联在细胞膜内均匀地穿插。通过流动细胞学对免疫细胞增殖进行体外和体内研究是这两类细胞跟踪染料(1,2)最常见的应用之一。
CFSE(卡博司氟辛琥珀基酯)是一种荧光染料,标志着分裂细胞。最初,所有细胞都接收相同数量的染料;将细胞均匀地分割他们收到的染料,在它们的两个子细胞之间。因此,细胞周期之后,细胞中的染料强度会逐渐降低。CFSE 染色之后是传统的多参数流式细胞测定法,这是一种高通量、基于荧光的技术,允许根据细胞的CFSE染色程度对细胞进行表型和功能表征(3)。
在下面的实验中,我们使用CFSE染色和流式细胞测定法,在CD3刺激后,评估CD4+和CD8+T细胞在体外增殖。
1. 准备
2. 解剖
3. 免疫细胞隔离
4. CFSE 染色和 T 细胞刺激
5. 细胞染色
抗体 | 氟铬 | 稀释 |
CD3 | 太平洋蓝 | 1/100 |
CD4 | BV786 | 1/1600 |
CD8 | 体育 | 1/400 |
Thy1.2 | BV605 | 1/400 |
表 1:抗体混合组合物。四种抗体鸡尾酒制剂,使用浓缩抗体荧光结合剂和HBSS。
6. 数据分析
图 1:浇注策略。细胞首先根据其形态进行封闭(左图:FSC-A、SSC-A)。然后,对 T 细胞进行封闭(中间:CD3、Thy1.2),并在 CD4+ T 细胞(橙色)和 CD8+ T 细胞(蓝色)上进一步划分(右侧:CD4、CD8)。请点击此处查看此图的较大版本。
对于大多数免疫学研究,测量免疫细胞增殖是一个关键步骤,常用CFSE荧光染料法。正确的细胞分裂对免疫细胞很重要,因为它调节免疫反应的水平和特异性。例如,T细胞增殖以识别和杀死癌细胞,B细胞进行细胞分裂以产生特定的抗体。CSFE测定的总体前提是用绿色荧光染料CFSE染色细胞,这种染料进入活细胞并与体内的蛋白质稳扎结合,从而产生永久标签。因此,当含染料的母细胞分裂时,每个子细胞从母细胞获得一半的荧光。
这个过程在后续的除法中继续,染料强度随着每个除法逐渐降低。在所需的端点处,每个细胞的荧光强度通过流式细胞测量测量。然后,这些数据用于量化细胞经历的分裂的数量和模式。如图所示,荧光最高的细胞群来自父代。第二高属于第二代,等等。峰值数决定单元格分割的数量。
此外,如果使用初级免疫细胞,特定细胞群(例如 T 细胞)可以与 CFSE 一起标记不同颜色的荧光染料,并使用多色流式细胞测定同时识别。新的数据可以绘制在同一图形上,现在显示具有不同CFSE染色强度的T细胞子群,通过该图可以具体分析T细胞的增殖率。本视频演示了CFSE染色小鼠小鼠小鼠小鼠小鼠细胞的方案,该细胞通过抗CD3抗体刺激。其次是染色,以标记T细胞和流动细胞测量,以跟踪其细胞增殖。
首先,穿上适当的防护服和实验室手套。接下来,先用洗涤剂洗一把钳子,用70%的乙醇清洗剪刀,然后用干净的纸巾擦干。将一毫升FCS与49毫升的HBSS在50毫升管中结合,制备50毫升汉克平衡盐溶液(HBSS),将胎儿小牛血清(FCS)浓度为2%。通过轻轻上下移液约10次混合。然后,分离小鼠脾脏细胞,如FACS分离脾B淋巴细胞的视频协议所示。
将四个15毫升的管子贴上一到四个标签,并在第七个分离的脾细胞中添加一乘一乘。接下来,在每个管中加入三毫升的HBSS 2%FCS。然后,将一微升的五微摩尔碳化物氟化物二甲酰酯(CFSE)移液到每个管中。在5%的二氧化碳培养箱中,在37摄氏度下孵育管子10分钟。管1和2中的细胞不会受到刺激。它们将用于揭示脾CD4和CD8T细胞的增殖基础水平。
将 10 毫升 HBSS 2% FCS 移入这些管中。三和四管将受到抗CD3抗体的刺激,以观察对细胞周期的影响。在三和四管中加入10毫升HBSS 2%FCS和抗CD3抗体,最终浓度为每毫升2.5微克。接下来,在370 x g下,在10摄氏度下将所有管子离心7分钟。丢弃上生物。将颗粒重新悬浮在两毫升的 HBSS 2% FCS 中,并将所得溶液移液到六孔板上的单独孔中。小心地将铭牌贴上 1 到 4 的标签,以跟踪样品标识。在37摄氏度和5%的CO2下孵育细胞三天。
在第三天,加入两毫升的HBSS 2%FCS到井1和3,其中应包含管1和3的细胞。上下用力移液,然后将样品转移到标有五毫升的FACS管中。将六孔板放回培养箱中。这些来自第二口和第四口井的剩余细胞将在第五天进行分析,以研究刺激对细胞周期的长期影响。在370 x g下在10摄氏度下将管子离心7分钟,然后丢弃上生子。现在,在每个管中加入100微升的抗体混合物。在黑暗中的冰上孵育管子20分钟。接下来,在每个管中加入一毫升HBSS 2%FCS,并在370 x g下在10摄氏度下将管子离心7分钟。丢弃上生物。在 200 毫升的 HBSS 2% FCS 中重新悬浮颗粒,并混合良好。将重新悬浮的颗粒转移到新的标记的 FACS 管中。
然后,使用流细胞测定法评估T细胞增殖,如FACS协议所示。门细胞选择淋巴CD3阳性细胞,并区分CD4阳性和CD8阳性细胞,并记录管1和3的数据。在第五天,用六孔板中剩余的两口孔中的细胞重复细胞染色过程。
我们将分析CD3刺激对CD4和CD8阳性细胞在刺激后三天和五天细胞周期的影响。首先,单击 FlowJo 图标,将文件拖到”所有示例”窗口中。双击第三天收集的未刺激单元格的文件,以显示 y 轴上向前散射的点图,在 x 轴上显示侧散射。单击多边形,根据其形态圈圈淋巴细胞群。在子填充标识窗口中,命名总体淋巴细胞并单击”确定”。接下来,双击圆圈总体,在新窗口中,在 y 轴上选择 Thy1.2,在 x 轴上选择 CD3。然后,单击多边形以圈出 CD3 和 Thy1.2 双阳性细胞。在新的子填充标识窗口中,命名总体 T 细胞并单击”确定”。接下来,双击圆圈填充。在新窗口中,选择 y 轴上的 CD4 和 x 轴上的 CD8。然后,单击多边形以圈出 CD4 阳性总体。在新的子填充标识窗口中,命名总体 CD4 T-Cells 并单击”确定”。现在,单击多边形以圈出 CD8 阳性总体。在新的子填充标识窗口中,命名总体 CD8 T-Cells 并单击”确定”。对其他文件重复这些步骤。
要确定分割和非分割单元格的频率,首先,通过单击布局编辑器来可视化单元格群。然后,将 CD4 T 细胞和 CD8 T 细胞从四个管中的每一个拖动到”所有样本”窗口。将显示表示人口群的图形。对于每个管,双击 CD8 T 细胞的点图,并在”图形定义”下选择直方图以可视化结果。选择 CFSE 作为参数,以比较每个时间点的刺激细胞群与未刺激的细胞群。非分裂细胞保持较高的CFSE水平,而增殖细胞将CFSE的含量分解为分裂细胞。
现在,在按下 Shift 键时,双击直方图。在新窗口中,单击范围并选择与最高峰值对应的 CFSE 范围。在子填充标识窗口中,命名总体非分割 CD8 T 细胞,并标记人口划分 CD8 单元格。现在,重复一下,选择每个管中的分离和非分离CD4 T细胞。要检查分割 CD3 阳性单元格的频率,请单击表编辑器。然后,将感兴趣的群体、分离 CD8 T 细胞和分割 CD4 T 细胞拖入表中。在”统计”菜单上,选择 T 细胞的频率。然后,单击”创建表”以显示新表中的频率。
在本实验中,我们跟踪了在体外培养中脾CD4和CD8+T细胞的增殖。 3天后,我们没有看到CD4+和CD8+T细胞有或没有刺激的强烈增殖。这在图 2的顶部面板上可以看到,其中 CSFE 的峰值没有降低。然而,5天后,我们开始看到两个种群的增殖,这从CSFE峰值的下降(底部面板,图2)中可见一斑。CFSE染色,清楚地表明CD4+和CD8+T细胞在刺激后分裂更多。此外,CD8+ T细胞在5天的刺激后似乎比CD4+T细胞增殖性略高。
图2:CD4与CD8 T细胞增殖。第 3 天(顶部面板)和第 5 天(底部面板)T 细胞的增殖。在两个不同天有或没有刺激的CD4和CD8 T细胞之间比较细胞周期。CD4和CD8 T细胞在刺激时增殖更多。CD8刺激T细胞增殖超过CD4刺激T细胞在第5天。请点击此处查看此图的较大版本。
增殖测定通常用于不同的领域,如免疫学,以确定细胞的活化程度。它也在肿瘤诊断中执行,以确定患者的肿瘤攻击性。CFSE 染色是跟踪免疫细胞种群随时间扩散的有用技术。其他方法允许细胞周期的表征。BrdU,CFSE的等价物只纳入分裂细胞中。最近的Fucci小鼠模型甚至允许检测细胞周期阶段,而无需额外的染色。
For most immunology studies, measuring proliferation of immune cells is a key step and the CFSE fluorescent dye-based method is commonly used. Proper cell division is important for immune cells since it regulates both levels and specificity of an immune response. For example, T-cells proliferate to identify and kill cancer cells and B-cells undergo cell division to produce specific antibodies. The overall premise of the CSFE assay involves staining the cells with the green fluorescent dye CFSE, which enters live cells and stably binds to the proteins inside, resulting in permanent labeling. As a result, when the dye-containing parent cell divides, each daughter cell gets half the fluorescence from the parent cell.
This process continues in the subsequent divisions with the dye intensity progressively decreasing with each division. At the desired endpoint, the fluorescence intensity of each cell is measured by flow cytometry. This data is then used to quantify the number and pattern of divisions the cells have gone through. As shown here, the cell population with the highest fluorescence are from the parent generation. The second highest belongs to the second generation and so on. The number of peaks determines the number of cell divisions.
In addition, if primary immune cells are used, specific cell populations, like the T-cells for example, can be labeled with a different colored fluorescence dye along with CFSE, and simultaneously identified using multicolor flow cytometry. The new data can be plotted on the same graph, now showing the T-cell sub-population with different CFSE staining intensities, by which the proliferation rate of the T-cells can be specifically analyzed. This video demonstrates the protocol for CFSE staining of mouse splenocytes, which are stimulated with an anti-CD3 antibody. This is followed by staining to label T-cells and flow cytometry to track their cell proliferation.
To begin, put on appropriate protective clothing and laboratory gloves. Next, wash a pair of forceps and dissecting scissors first with a detergent and then with 70% ethanol and then wipe them dry with a clean paper towel. Prepare 50 milliliters of Hank’s Balanced Salt Solution, or HBSS, with a 2% concentration of fetal calf serum, or FCS, by combining one milliliter of FCS with 49 milliliters of HBSS in a 50 milliliter tube. Mix by gently pipetting the solution up and down approximately 10 times. Then, isolate mouse spleen cells as demonstrated in the video protocol for FACS isolation of splenic B-lymphocytes.
Label four 15-milliliter tubes one through four and add one times 10 to the seventh isolated spleen cells. Next, add three milliliters of HBSS 2% FCS to each tube. Then, pipette one microliter of five micromolar carboxyfluorescein succinimidyl ester, or CFSE, into each tube. Incubate the tubes at 37 degrees Celsius in a 5% carbon dioxide incubator for 10 minutes. The cells in tubes one and two will not be stimulated. They will be used to reveal the basal level of proliferation of splenic CD4 and CD8 T-cells.
Pipette 10 milliliters of HBSS 2% FCS into these tubes. Tubes three and four will be stimulated by anti-CD3 antibody in order to observe the effects on the cell cycle. Add 10 milliliters of HBSS 2% FCS and anti-CD3 antibody at a final concentration of 2.5 micrograms per milliliter to tubes three and four. Next, centrifuge all of the tubes at 370 x g for seven minutes at 10 degrees Celsius. Discard the supernatants. Resuspend the pellets in two milliliters of HBSS 2% FCS and pipette the resulting solutions into separate wells on a six-well plate. Carefully label the plate from one to four to keep track of sample identities. Incubate the cells at 37 degrees Celsius and 5% CO2 for three days.
On day three, add two milliliters of HBSS 2% FCS to wells one and three, which should contain the cells from tubes one and three. Pipette up and down vigorously and then transfer the samples into labeled five-milliliter FACS tubes. Place the six-well plate back into the incubator. These remaining cells from wells two and four will be analyzed on day five to investigate long-term effects of stimulation on the cell cycle. Centrifuge the tubes at 370 x g for seven minutes at 10 degrees Celsius and then discard the supernatants. Now, add 100 microliters of antibody mix to each tube. Incubate the tubes for 20 minutes on ice in the dark. Next, add one milliliter of HBSS 2% FCS to each tube and centrifuge the tubes at 370 x g for seven minutes at 10 degrees Celsius. Discard the supernatants. Re-suspend the pellets in 200 milliliters of HBSS 2% FCS and mix well. Transfer the resuspended pellets to new labeled FACS tubes.
Then, evaluate T-cell proliferation using flow cytometry as shown in the FACS protocol. Gate the cells to select lymphoid CD3-positive cells and to distinguish CD4-positive and CD8-positive cells, and record the data for tubes one and three. On day five, repeat the cell-staining process with the cells from the remaining two wells of the six-well plate.
We will analyze the effects of CD3 stimulation on the cell cycle of CD4 and CD8-positive cells at three days and five days post-stimulation. To begin, click on the FlowJo icon and drag your files into the All Sample window. Double-click on the file for the unstimulated cells collected on day three to display a dot plot with forward scatter on the y-axis and side scatter on the x-axis. Click on polygon to circle the lymphocyte populations based on their morphology. In the sub-population identification window, name the population lymphocytes and click OK. Next, double-click on the circled population and in the new window, select Thy1.2 on the y-axis and CD3 on the x-axis. Then, click on polygon to circle the CD3 and Thy1.2 double positive cells. In the new sub-population identification window, name the population T-Cells and click OK. Next, double-click on the circled population. In the new window, select CD4 on the y-axis and CD8 on the x-axis. Then, click on polygon to circle the CD4-positive population. In the new sub-population identification window, name the population CD4 T-Cells and click OK. Now, click on polygon to circle the CD8-positive population. In the new sub-population identification window, name the population CD8 T-Cells and click OK. Repeat these steps with the other files.
To determine the frequencies of dividing and non-dividing cells, first, visualize the cell populations by clicking on Layout Editor. Then, drag the CD4 T-cells and CD8 T-cells from each of the four tubes to the All Sample window. Graphs representing your populations will appear. For each tube, double-click on the dot plot for CD8 T-cells and select Histogram under Graph Definition to visualize the results. Select CFSE as the parameter to compare the stimulated versus unstimulated cell populations at each time point. Non-dividing cells maintain higher levels of CFSE whereas proliferating cells split the content of CFSE to dividing cells.
Now, while pressing the Shift key, double-click on the histogram. In the new window, click range and select the range of CFSE corresponding to the highest peak. In the sub-population identification window, name the population Non-Dividing CD8 T-Cells and label the population Dividing CD8 Cells. Now, repeat to select the dividing and non-dividing CD4 T-cells in each tube. To examine the frequency of dividing CD3-positive cells, click on Table Editor. Then, drag the populations of interest, Dividing CD8 T-Cells and Dividing CD4 T-Cells, into table. On the Statistic menu, select Frequency of T-cells. Then, click on Create Table to reveal the frequency in a new table.
Related Videos
Immunology
92.5K 浏览
Immunology
22.7K 浏览
Immunology
236.6K 浏览
Immunology
28.3K 浏览
Immunology
78.4K 浏览
Immunology
43.3K 浏览
Immunology
53.5K 浏览
Immunology
42.9K 浏览
Immunology
87.3K 浏览
Immunology
24.1K 浏览
Immunology
22.1K 浏览
Immunology
151.3K 浏览