资料来源: 实验室的菲利普 · 米勒博士 — — 伦敦大学帝国学院
许多化学实验要求温度升高之前任何反应观察,然而加热解的反应物导致损失的反应物和/或溶剂通过蒸发其沸点是否足够低。为了确保不丢失的反应物或溶剂,回流系统用于凝结加热产生任何蒸气并返回这些凝聚到反应容器。
回流系统要正常运行使用水冷玻璃柱 (回流冷凝器) 垂直连接至电源插座的反应容器。这块玻璃器皿包括套管柱的水入口和出口端口,使冷自来水流过外套,虽然反应蒸气被迫通过内层的列。流动的冷水确保这些蒸汽凝于内层的列的墙壁和重力将返回这些凝聚到反应容器。一旦已达到稳定的回流应建立反应液流体回不断滴。以这种方式,不需要更多的溶剂要添加可以无限期地离开反应。 这个视频会解释连接玻璃器皿和建立稳定的回流的过程。
1.编制的玻璃器皿
2.加热反应物
3.拆除设备
回流冷凝器是常用的在有机化学中,防止反应物或溶剂损失在激烈的化学反应装置。
对于化学反应,需要在高温回流系统可以用于防止通过蒸发溶剂损耗的时间相当长时期进行。在这里,清凉的水冷凝器用于冷却并返回蒸发的溶剂和反应物回反应釜导致其养护随着时间的推移。这还可以确保反应将举行一个恒定的温度,因为所选的溶剂会有已知的、 稳定的沸点。
这个视频将解释回流实验的基本知识,并演示如何在适当的玻璃器皿和设备实验室执行的技术。
阿伦尼乌斯方程国家通过提高反应温度,反应速率增大。
回流系统运作下的蒸发和冷凝的动态平衡的溶剂、 反应物、 产物分子在烧瓶内的率。凝汽器不断刷新用冷水和圆底烧瓶然后放入洗个温水澡。在加热,溶液蒸发和冷凝器列冷却水蒸气分子。
蒸气冷凝的内部玻璃侧壁上,然后返回回烧瓶作为冷凝液。如果蒸气凝结得太高溶剂损失可以发生在凝汽器和必须增加流量的冷水。随着时间的推移和反应所得,所有的汽化物种都和之间的反应物,溶剂或在烧瓶内的产品时不受损失。本议定书应在通风良好的化学罩与附近的水冷源访问的整个反应安装程序。
现在你了解反流的基本知识让我们看看如何设置和执行适当的玻璃器皿热和回流条件下简单的酯交换反应。
在执行该过程之前检查所有玻璃器皿化学污染物可能从以前反应的迹象。所有的水分通过消除干燥 30 分钟删除烤箱玻璃器皿玻璃器皿一旦冷却至室温。
接下来,适用于清洁实验室组织的极少量的丙酮和擦去所有的磨光玻璃接头,去除化学物质和颗粒污染物。清洁瓶和冷凝器列现在准备组装成回流系统。用合适的溶剂溶解在圆底烧瓶内的化学试剂。将磁搅拌棒添加到烧瓶之后, 通过加入玻璃器皿的地面玻璃端口连接回流冷凝器。附加的联合凯剪辑。连接管冷水源和凝汽器列的底部端口之间。然后,创建另一个管连接之间凝汽器列的顶部和实验室的水池里。最后,在水面上慢慢地转身充满冷凝器列循环冷水。调整水的流量,防止过度加压管连接。
要完成回流安装,潜入入加热洗澡水中反应容器。根据所需的温度范围,这些充满水或油。为最佳加热浴的水平应略高于半月板的烧瓶内反应物。
安全的凝汽器和瓶组合中环站及夹具用老板的地方。通过启用对搅拌器和灶具开始反应。热浴对大约 15 ° C 以上溶剂的沸点。一旦已达到平衡蒸发和冷凝之间不断滴下的浓缩溶剂将开始重新陷入反应容器,从凝汽器列。化学反应完毕后关闭热板和重新夹紧环站更高处的器具。让冰冷的水,继续在凝汽器循环,直到安装程序已冷却到室温。
然后在此基础上,关闭冷水源,凝汽器断开烧瓶。要完成空拆卸任何剩余的进水池里,在凝汽器水并删除所有油管从玻璃柱。
在此示例中,回流对苯二甲酸二甲酯和乙二醇生产 bis(2-hydroxyethyl) 聚对苯二甲酸和甲醇作为一种副产品。由于其低沸点甲醇作为回流溶剂。在此酯交换反应加热混合物在 65 ° C 45 分钟确保可见产品形成后核磁共振波谱法。更多的信息,请参阅对核磁共振的此集合的视频。
应用控制的热是一个常见的要求,在广泛的化学反应。
在此示例中,精确地控制组成、 大小和电导率的半导体纳米晶体需要精确的化学合成条件。在所需的结晶条件下,合成进行在 370 ° c。凝汽器列防止蒸发损失。由裁缝的反应条件,表现出的不同的对称的半导体纳米晶体的集合被合成并放置在接近度与彼此创造可以操纵一级纳米光子的异质结构。在另一示例中,磁性纳米团簇粒子还合成了使用加热的回流条件下的化学反应。这些纳米颗粒的磁性和电浆子属性帮助生物医学成像。
通过回流安装减轻了苛刻的反应条件。
最后,回流冷凝器可以用于广泛的化学反应。在 Heck 反应中,不饱和的卤化物和烯烃加热形成的取代的烯烃。
再次,Heck 反应的设置是类似于前面的示例中,凝汽器 — — 圆底烧瓶组合被放置入加热洗澡。
当结合含钯的有机催化剂,可以在许多制药化合物的合成 Heck 反应。
你刚看了设置回流系统,用于加热化学反应的朱庇特的简介。现在,您应该了解的蒸发和冷凝以及如何选择和组合适当玻璃器皿为你回流反应平衡的基本理论。
谢谢观赏 !
结果可以观察后由此产生的解决方案,光谱表征,现在应该有两种试剂反应形成一种新产品。通常情况下,各种纯化战略将需要分开不良的副反应所需的产品。
在此示例中,对苯二甲酸二甲酯 (DMT) 和乙二醇之间的酯交换反应发生起 bis(2-hydroxyethyl) 聚对苯二甲酸和甲醇 (方案 1)。回流的溶剂将正在甲醇生产 (传呼机的 65 ° C)。加热回流 45 分钟起始材料(图 1)后, 核磁共振 (NMR) 技术可以用于确保产品形成,如图 2所示。
方案 1。对苯二甲酸二甲酯和乙二醇之间的酯交换反应。
图 1。1H 核磁共振谱的起始原料: 对苯二甲酸二甲酯 (DMT)。
图 2。1H 核磁共振谱的产品: bis(2-hydroxyethyl) 聚对苯二甲酸。
执行下回流反应是一种重要的技术了解。除了提供藉以溶剂和挥发性试剂是回收系统,它还允许精细控制反应温度,因为这将举行恒定在所选溶剂的沸点。通过仔细选择溶剂,人可以控制在一个非常狭窄的范围内温度。
更先进的技术可以利用回流的溶剂来执行复杂的纯化技术,如 soxhlet 或分馏。后者用于工业规模巨大,例如中石油炼油厂以分成不同沸点的各种汽油馏分的原油。
A reflux condenser is an apparatus commonly used in organic chemistry to prevent reactant or solvent loss in a heated chemical reaction.
For chemical reactions that need to be carried out at elevated temperatures over long periods of time a reflux system can be used to prevent the loss of solvent through evaporation. Here, a cool water condenser is used to cool and return vaporized solvent and reactant back to the reaction vessel resulting in their conservation over time. This also ensures the reaction will be held at a constant temperature, as the chosen solvent will have a known, stable boiling point.
This video will explain the basics of a reflux experiment and demonstrate how to perform the technique in the laboratory with appropriate glassware and equipment.
The Arrhenius equation states that by increasing the temperature of a reaction, the reaction rate increases.
A reflux system operates under the dynamic balance between the evaporation and condensation rates of the solvent, reactant, and product molecules within the flask. The condenser is continually flushed with cold water and the round bottom flask is then placed into a heated bath. Upon heating, the solution evaporates and the condenser column cools the vapor molecules.
The vapor is condensed on the internal glass sidewall and then returns back down to the reaction flask as liquid condensate. If the vapor condenses too high in the condenser loss of solvent can occur and the flow rate of cold water must be increased. As time progresses and the reaction proceeds, all vaporized species are recovered and no loss occurs among the reactants, solvents, or products within the flask. For this protocol the entire reaction setup should be performed in a well-ventilated chemical hood with access to a nearby cold water source.
Now that you understand the basics of reflux let’s see how to setup and perform a simple transesterification reaction under heat and reflux conditions with the appropriate glassware.
Before performing the procedure inspect all glassware for signs of possible chemical contaminants from previous reactions. Eliminate all moisture by drying the glassware in an oven for 30 min. Remove the glassware once it has cooled to room temperature.
Next, apply a small amount of acetone to a clean lab tissue and wipe all ground-glass joints to remove chemical- and particle-contaminants. The clean flask and condenser column are now ready to be assembled into a reflux system. With a suitable solvent dissolve the chemical reagents inside the round-bottom flask. After adding a magnetic stir bar to the flask, connect the reflux condenser by joining the ground-glass ports of the glassware. Attach a Keck clip to the joint. Connect a tube between the cold-water source and the bottom port of the condenser column. Then, make another tube connection between the top of the condenser column and the lab sink. Finally, turn on the water slowly and fill the condenser column with circulating cold water. Adjust the water flow to prevent over-pressurizing the tube connections.
To complete the reflux setup, submerge the reaction vessel into a heating bath. Depending on the desired temperature range, these are filled with water or oil. For optimal heating, the level of the bath should be just above the meniscus of the reactants inside the flask.
Secure the condenser and flask combination in place using a ring stand and clamps with bosses. Begin the reaction by turning on the stirrer and hotplate. Heat the bath to approximately 15 °C above the boiling point of the solvent. Once equilibrium between evaporation and condensation has been reached a steady drip of condensed solvent will start falling back into the reaction vessel from the condenser column. When the chemical reaction is complete turn off the hot plate and re-clamp the apparatus higher up the ring stand. Allow cold water to continue circulating throughout the condenser until the setup has cooled to room temperature.
Then, turn off the cold-water source and disconnect the condenser from the reaction flask. To complete the disassembly empty any remaining water in the condenser into the sink, and remove all tubing from the glass column.
In this example, dimethyl terephthalate and ethylene glycol were refluxed to produce bis(2-hydroxyethyl) terephthalate and methanol as a byproduct. Due to its low boiling point the methanol acted as the refluxing solvent. In this transesterification reaction heating the mixture at 65 °C for 45 min ensured visible product formation upon NMR spectroscopy. For more information, see this collection’s video on NMR.
Applying controlled heat is a common requirement in a wide range of chemical reactions.
In this example, precise control over the composition, size, and electrical conductivity of semiconductor nanocrystals required precise chemical synthesis conditions. For the desired crystal conditions, the synthesis was performed at 370 °C. The condenser column prevented loss due to evaporation. By tailoring the reaction conditions, a collection of semiconductor nanocrystals exhibiting different symmetries were synthesized and placed in proximity with each other to create heterostructures that can manipulate photons at a nanoscale level. In another example, magnetic nanocluster particles were also synthesized using heated chemical reactions under reflux conditions. These nanoparticles’ magnetic and plasmonic properties aid in biomedical imaging.
The harsh reaction conditions were mitigated through a reflux setup.
Finally, reflux condensers can be used in a wide range of chemical reactions. In the Heck reaction, an unsaturated halide and an alkene are heated to form a substituted alkene.
Once again, the setup for the Heck reaction was similar to the previous examples, where the condenser – round-bottom flask combination was placed into a heated bath.
When combined with a palladium-containing organic catalyst, the Heck reaction can be useful in the syntheses of many pharmaceutical compounds.
You’ve just watched JoVE’s introduction to setting up a reflux system to be used in heated chemical reactions. You should now understand the underlying theory between the balance of evaporation and condensation and how to choose and assemble the appropriate glassware for your reflux reaction.
Thanks for watching!
Related Videos
Organic Chemistry
34.1K 浏览
Organic Chemistry
166.2K 浏览
Organic Chemistry
70.3K 浏览
Organic Chemistry
41.5K 浏览
Organic Chemistry
55.9K 浏览
Organic Chemistry
79.1K 浏览
Organic Chemistry
705.0K 浏览
Organic Chemistry
157.2K 浏览
Organic Chemistry
236.9K 浏览
Organic Chemistry
212.3K 浏览
Organic Chemistry
332.7K 浏览
Organic Chemistry
32.3K 浏览
Organic Chemistry
288.3K 浏览
Organic Chemistry
358.3K 浏览
Organic Chemistry
246.7K 浏览