Understanding the function of the vertebrate central nervous system requires recordings from many neurons because cortical function arises on the level of populations of neurons. Here we describe an optical method to record suprathreshold neural activity with single-cell and single-spike resolution, dithered random-access scanning. This method records somatic fluorescence calcium signals from up to 100 neurons with high temporal resolution. A maximum-likelihood algorithm deconvolves the underlying suprathreshold neural activity from the somatic fluorescence calcium signals. This method reliably detects spikes with high detection efficiency and a low rate of false positives and can be used to study neural populations in vitro and in vivo.