Back to chapter

5.12:

תובלה פעילה שניונית

JoVE Core
Biology
This content is Free Access.
JoVE Core Biology
Secondary Active Transport

Languages

Share

למרות שהובלות פעילות ראשונית ושניונית שתיהן מסתמכות על חלבוני קרום התא, האחרונה צורכת אנרגיה המאוחסנת במפלים אלקטרוכימיים של יונים, לא ב-ATP, כדי להניע חלבונים אלה ולהזיז מולקולות כמו גלוקוז לתוך תאים בניגוד למפלים. חלבון אחד שממחיש הובלה פעילה שניונית SGLT1 הוא נשא משולב נתרן-גלוקוז 1. בהתחלה, נשא זה ממוקם כך, שהצד הפונה לציטופלזמה סגור, אבל הצד החוץ-תאי פתוח.זה חושף שני אתרי קישור לנתרן הטעונים שלילית אל הסביבה, אשר אז נקשרים אל יוני נתרן בעלי מטען חיובי. מכיוון שישנם יותר יונים של נתרן בחלל החוץ-תאי מאשר בציטופלזמה, ופנים התא טעון שלילית יותר בהשוואה לסביבתו, יוני הנתרן הקשורים לנשא נעים במורד המפל האלקטרוכימי שלהם. זה משחרר אנרגיה, ומאפשר לחלבון לשנות את המבנה שלו ולהגדיל את הזיקה שלו לגלוקוז שנוכח ברמה נמוכה בחוץ, אבל בריכוז גבוה בתוך התא.אז, מולקולת גלוקוז מתחברת לנשא וקישור בו-זמני זה של נתרן וסוכר גורם לחלבון לסגור את האזור החוץ-תאי שלו ולפתוח את הצד שפונה לציטופלזמה. יוני הנתרן אז מתנתקים ונכנסים אל הציטופלזמה. זה מקטין את זיקת החלבון לגלוקוז וכתוצאה מכך הסוכר משוחרר.הוא מועבר יחד עם היונים אל תוך התא, אבל בניגוד למפל הריכוזים שלו. לאחר שהתרוקן, הנשא חוזר אל המצב הראשוני שלו.

5.12:

תובלה פעילה שניונית

One example of how cells use the energy contained in electrochemical gradients is demonstrated by glucose transport into cells. The ion vital to this process is sodium (Na+), which is typically present in higher concentrations extracellularly than in the cytosol. Such a concentration difference is due, in part, to the action of an enzyme “pump” embedded in the cellular membrane that actively expels Na+ from a cell. Importantly, as this pump contributes to the high concentration of positively-charged Na+ outside a cell, it also helps to make this environment “more positive” than the intracellular region. As a result, both the chemical and electrical gradients of Na+ point towards the inside of a cell, and the electrochemical gradient is similarly directed inwards.

Sodium-glucose Cotransporters

Sodium-glucose cotransporters (SGLTs) exploit the energy stored in this electrochemical gradient. These proteins, primarily located in the membranes of intestinal or kidney cells, help in the absorption of glucose from the lumen of these organs into the bloodstream. In order to function, both an extracellular glucose molecule and two Na+ must bind to the SGLT. As Na+ migrates into a cell through the transporter, it travels with its electrochemical gradient, expelling energy that the protein uses to move glucose inside a cell—against its chemical gradient, since this sugar tends to be at a higher concentration within a cell. As a result, glucose travels uphill against its concentration gradient simultaneously with Na+ that travels down its electrochemical gradient. This is an example of secondary active transport, so-named because the energy source used is electrochemical in nature, rather than the primary form of ATP.

Therapies Targeting SGLTs

Given the role of glucose in certain diseases, scientists have begun to look at ways of interfering with glucose transport into cells. For example, diabetes is characterized by excess glucose in the bloodstream, which can lead to nerve damage and other complications. As a result, some researchers are assessing how SGLT expression differs between diabetics and non-diabetics, and whether inhibiting different SGLTs can help treat the disease. Alternatively, since cancer cells have been demonstrated to require more glucose compared to their normal counterparts, other investigators are examining whether glucose transporters can be a new target of anti-cancer therapies.

Suggested Reading

Forrest, Lucy R., Reinhard Krämer, and Christine Ziegler. “The Structural Basis of Secondary Active Transport Mechanisms.” Biochimica Et Biophysica Acta 1807, no. 2 (February 2011): 167–88. [Source]

Diallinas, George. “Understanding Transporter Specificity and the Discrete Appearance of Channel-like Gating Domains in Transporters.” Frontiers in Pharmacology 5 (September 12, 2014). [Source]