Back to chapter

35.2:

מחזור החיים של מכוסי זרע

JoVE Core
Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Biology
The Angiosperm Life Cycle

Languages

Share

בעלי פרחים קבוצת הצמחים המגוונת ביותר על פני כדור הארץ כוללת עצים פורחים ופירות, עשבים, ירקות וצמחים פורחים אחרים מחזור החיים של בעלי פרחים נשלט על ידי שלב הספורופיט המייצר נבגים, ולא שלב הגמטופיטים המיניים. כמו מחטנאים, בעלי פרחים מייצרים שני סוגים של נבגים. גמטות זכריות ונקביות אלה מיוצרות באיברי פרחים רבייה מובחנים.מגה נגבים מיוצרים בעלה שחלה. עלה שחלה כולל שחלה וביציותיו. כל ביצית מכילה מגה מנגב, בו מייצרים מגה נגבים בתוך כל מגה מנגב נמצא מגספורוציט תא אם של מגה נגב.מגספורוציט מייצר ארבע מגה מגה נגבים באמצעות מיוזה;אחד שורד ומתפתח לשק עובר המורכב מביצית ומספר קטן של תאים אחרים. מקורם של המיקרו-נגבים במאבק הפרחים בקצות האבקנים. בתוך המאבקים נמצאים מיקרו-מנגב המכילים מיקרוספורוציטים.מיקרוספורוציטים מייצרים מיקרו-נגבים באמצעות מיוזה. המיקרו-נגב מתפתח לדגן אבקה המכיל תא צינור ותא גנראטיבי. לאחר שהאבקה מגיעה לצלקת החלק העליון של עלה גביע-תא הצינור הופך לצינור אבקה.צינור האבקה משתרע לאורך עלה גביע אל הביצית, המכיל את שק העובר. התא הגנראטי מתחלק אז כדי ליצור שני סוגי זרע זרע אלה משתחררים יחד לביצית אחת, בפעולה של הפריה כפולה. האחד מפרה את הביצית והשני מפרה את התא המרכזי של שק העובר.לאחר מכן הביצית המופרית יוצרת זיגוטה שתתפתח לעובר. התא המרכזי המופרה מהווה את האנדוספרם מבנה אגירת חומרי מזון. העובר ואנדוספרם נארזים בזרע.במקרה של בעלי פרחים רבות, השחלה מתפתחת לפרי המכיל בדרך כלל ריבוי זרעים, או ביציות מופרות. הפרי לובש צורות אפשריות רבות, בדרך כלל בהתאם למין לעיתים נראה דומה מאוד לשחלה המקורית ובפעמים אחרות מגייס רקמות נוספות או מחבר יחד כמה מבנים פורחים ליצירת פירות קולקטיביים. לבסוף, זרע שנבט מתפתח לספורופיט בוגר, שיכול לייצר פרחים ולהתחיל מחזור חיים נוסף.

35.2:

מחזור החיים של מכוסי זרע

Plants have a life cycle split between two multicellular stages: a haploid stage—with cells containing one set of chromosomes—and a diploid stage—with cells containing two sets of chromosomes. The haploid stage is the gamete-producing gametophyte, and the diploid stage is the spore-producing sporophyte.

Today, most plants grow from seeds and produce flowers and fruit; such plants are called angiosperms. Angiosperms begin as seeds—structures consisting of a protective seed coat, a nutrient supply, and an embryo. The seed develops into a sporophyte—the familiar, flower-producing plant form.

The reproductive life cycle of angiosperms begins with flowering. Stamens and carpels contain sporangia, structures with spore-producing cells called sporocytes. Sporophytes produce spores as either eggs or sperm, depending on their origin.

For example, male spores—called microspores—are produced within anthers at the tips of stamens. A microspore develops into a pollen grain—the male gametophyte. A pollen grain contains a tube cell and a generative cell, which develops into sperm.

A carpel consists of an ovary and its ovules. Female spores, called megaspores, are produced within ovules. A megaspore develops into an embryo sac—the female gametophyte—which contains the egg.

Pollination allows the sperm-producing pollen grain to reach the egg-containing embryo sac. While the embryo sac is stationary, pollen grains can be carried by wind, water, or animals.

For sperm to fertilize an egg, pollen released from the anthers must reach the sticky stigma at the tip of a carpel. Then, the tube cell of the pollen grain becomes a pollen tube, extending down the carpel to the ovule.

Angiosperms undergo a type of double fertilization that produces an embryo and an endosperm, a nutrient store. The embryo and endosperm are packed into a seed coat, forming a seed. As the ovules become seeds, the ovary typically develops into fruit that helps protect and distribute the seeds.

Suggested Reading

Bleckmann, Andrea, Svenja Alter, and Thomas Dresselhaus. 2014. “The Beginning of a Seed: Regulatory Mechanisms of Double Fertilization.” Frontiers in Plant Science 5 (November). [Source]

Endress, P. K. 2011. “Angiosperm Ovules: Diversity, Development, Evolution.” Annals of Botany 107 (9): 1465–89. [Source]