Back to chapter

5.10:

Reële gassen - Afwijkingen van de Ideale Gaswet

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Real Gases: Effects of Intermolecular Forces and Molecular Volume Deriving Van der Waals Equation

Languages

Share

Ideale gassen volgen de relatie druk maal volume gedeeld door nRT is gelijk aan één. Denk aan de wet van Boyle, die stelt dat wanneer de hoeveelheid en temperatuur van een gas constant worden gehouden, het verhogen van de druk het volume steevast zal verkleinen om een constante verhouding te behouden. Maar wanneer die verhouding wordt uitgezet als een functie van de druk voor één mol van verschillende reële gassen, is deze alleen bij lage drukken gelijk aan de ideale waarde één”Naarmate de druk toeneemt, wijken de curven aanzienlijk af van de idealiteit.Bij lage drukken is het gecombineerde volume van gasdeeltjes verwaarloosbaar in verhouding tot het containervolume zoals een erwt in een basketbal. Daarom is het beschikbare volume voor ideale gasdeeltjes gelijk aan het totale containervolume. Bij hogere drukken is de gasdichtheid veel groter.Zo wordt het gecombineerde volume van de gasdeeltjes significant als een erwt in een pingpongbal. Daarom is de aanname van de kinetische moleculaire theorie dat gasdeeltjes een verwaarloosbaar volume innemen ongeldig bij hoge drukken. Het volume dat wordt ingenomen door een reëel gas is groter dan het volume dat beschikbaar is voor de deeltjes, dat is het volume dat het in een ideaal geval zou innemen, door nb, waarbij b een experimenteel bepaalde constante is die afhangt van het gas en eenheden heeft van liters per mol.Door nb af te trekken, wordt het volume van een reëel gas naar beneden afgesteld op het volume dat beschikbaar is voor de deeltjes, wat overeenkomt met het ideale volume. Een andere aanname van de kinetische moleculaire theorie dat intermoleculaire krachten tussen gasmoleculen verwaarloosbaar zijn is alleen geldig onder hoge temperatuur en lage druk. Gassen oefenen doorgaans zeer zwakke aantrekkingskracht uit.Bij lage druk worden de gasdeeltjes over grote afstanden van elkaar gescheiden en nemen daardoor de aantrekkingskracht van andere deeltjes niet waar. Op dezelfde manier hebben de deeltjes onder hoge temperatuuromstandigheden hoge kinetische energieën ten opzichte van de aantrekkende krachten en bewegen ze zeer snel. Wanneer deeltjes botsen, kaatsen ze tegen elkaar af omdat de hoge kinetische energie de kleine aantrekkingskracht overwint.Wanneer het gas echter een hogere druk heeft, is de deeltjesdichtheid groter. De deeltjes worden daarom gescheiden door kortere afstanden, en de kans dat ze daardoor zullen interageren neemt daardoor toe. De aantrekkingskrachten tussen de deeltjes worden zodoende groter bij hoge drukken.Dit wordt duidelijker naarmate de temperatuur wordt verlaagd. De kinetische energie van de deeltjes neemt af en ze bewegen langzamer. Wanneer de intermoleculaire aantrekkingskracht significant wordt, is de kans groter dat deeltjes bij botsing aan elkaar blijven plakken’Naarmate gasdeeltjes meer tijd besteden aan interactie met naburige deeltjes, neemt de frequentie van botsingen met het containeroppervlak af.Bijgevolg is de druk die wordt uitgeoefend door een reëel gas lager dan die van een ideaal gas door a-n-kwadraat gedeeld door V-kwadraat. Hier is a een experimenteel bepaalde constante die afhangt van het gas en eenheden heeft van liters-kwadraat maal atmosfeer gedeeld door mol-kwadraat, en V is het werkelijke volume. Door deze term toe te voegen, wordt de werkelijke druk naar boven aangepast aan de druk die wordt uitgeoefend door een ideaal gas.De gewijzigde vergelijking met de correctiefactoren voor druk en volume wordt de vergelijking van Van der Waals genoemd voor niet-ideale of reële gassen.

5.10:

Reële gassen - Afwijkingen van de Ideale Gaswet

Thus far, the ideal gas law, PV = nRT, has been applied to a variety of different types of problems, ranging from reaction stoichiometry and empirical and molecular formula problems to determining the density and molar mass of a gas. However, the behavior of a gas is often non-ideal, meaning that the observed relationships between its pressure, volume, and temperature are not accurately described by the gas laws. 

According to kinetic molecular theory, particles of an ideal gas do not exhibit attractive or repulsive forces on one another. They are assumed to have a negligible volume compared with that of the container. At room temperature and 1 atm or less, gases follow the ideal behavior, as implied by the ideal gas equation.

Eq1

At higher pressures or lower temperatures, however, deviations from the ideal gas law occur, meaning that the observed relationships between its pressure, volume, and temperature are not accurately followed.

Rearranging the ideal gas equation to solve for n gives:

Eq2

For 1 mole of an ideal gas, the ratio PV/RT = 1, regardless of pressure. Any deviation of this ratio from one is an indication of non-ideal behavior.

The ideal gas law does not describe gas behavior well at relatively high pressures. Meaning, the ratio equals 1 only at low pressures. But as the pressure rises, PV/RT begins to deviate from 1, and the deviations are not uniform. At high pressures, the deviation from ideal behavior is large and different for each gas. Real gases, in other words, do not behave ideally at high pressure. At lower pressures (usually below 10 atm), however, the deviation from ideal behavior is small, and we can use the ideal-gas equation.

Particles of a hypothetical ideal gas have no significant volume and do not attract or repel each other. In general, real gases approximate this behavior at relatively low pressures and high temperatures. However, at high pressures, the molecules of a gas are crowded closer together, and the amount of empty space between the molecules is reduced. At these higher pressures, the volume of the gas molecules themselves becomes appreciable relative to the total volume occupied by the gas. The gas, therefore, becomes less compressible at these high pressures, and although its volume continues to decrease with increasing pressure, this decrease is not proportional as predicted by Boyle’s law.

At relatively low pressures, gas molecules have practically no attraction for one another because they are (on average) so far apart, and they behave almost like particles of an ideal gas. At higher pressures, however, the force of attraction is also no longer insignificant. This force pulls the molecules a little closer together, slightly decreasing the pressure (if the volume is constant) or decreasing the volume (at constant pressure). This change is more pronounced at low temperatures because the molecules have lower KE relative to the attractive forces, and so they are less effective in overcoming these attractions after colliding with one another.

There are several different equations that better approximate gas behavior than does the ideal gas law. The first, and simplest of these, was developed by the Dutch scientist Johannes van der Waals in 1879. The van der Waals equation improves upon the ideal gas law by adding two terms: one to account for the volume of the gas molecules and another for the attractive forces between them.

Eq3

The constant a corresponds to the strength of the attraction between molecules of a particular gas, and the constant b corresponds to the size of the molecules of a particular gas. The “correction” to the pressure term in the ideal gas law is an2/V2, and the “correction” to the volume is nb. Note that when V is relatively large and n is relatively small, both of these correction terms become negligible, and the van der Waals equation reduces to the ideal gas law, PV = nRT. Such a condition corresponds to a gas in which a relatively low number of molecules is occupying a relatively large volume, that is, a gas at relatively low pressure.

At low pressures, the correction for intermolecular attraction, a, is more important than the one for molecular volume, b. At high pressures and small volumes, the correction for the volume of the molecules becomes important because the molecules themselves are incompressible and constitute an appreciable fraction of the total volume. At some intermediate pressure, the two corrections have opposing influences, and the gas appears to follow the relationship given by PV = nRT over a small range of pressures.

Strictly speaking, the ideal gas equation functions well when intermolecular attractions between gas molecules are negligible, and the gas molecules themselves do not occupy an appreciable part of the whole volume. These criteria are satisfied under conditions of low pressure and high temperature. Under such conditions, the gas is said to behave ideally, and deviations from the gas laws are small enough that they may be disregarded — this is, however, very often not the case.

This text is adapted from Openstax, Chemistry 2e, Section 9.2: Non-ideal Gas Behavior.