Back to chapter

8.8:

Edelgase

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Noble Gases

Languages

Share

Die nichtmetallischen Elemente der Gruppe 18 Helium, Neon, Argon, Krypton, Xenon und Radon werden Edelgase genannt. Diese Elemente kommen als monoatomare Einheiten vor und existieren als Gase bei Raumtemperatur. Radon ist das einzige radioaktive Element der Gruppe 18.Nach unten in der Gruppe erhöht sich der Siedepunkt, die Dichte und der Atomradius der Elemente, was folglich zum Rückgang der Ionisationsenergien jedes aufeinanderfolgenden Elements führt. Dennoch haben Edelgase hohe Erst-Ionisationsenergien, im Vergleich zu allen anderen Elementen des Periodensystems. Das liegt daran, dass diese Elemente eine stabile Elektronenkonfigurationen mit vollständigen Oktetts haben.Ein Elektron zu entfernen, erfordert den Einsatz einer großen Energiemenge, was ungünstig ist. Edelgase haben auch positive Elektronenaffinitätswerte. Das bedeutet, dass Energie benötigt wird, um ein zusätzliches Elektron zu einem gasförmigen Atom hinzuzufügen.Edelgase widerstehen Elektronenzugabe, da ihre Valenzschalen bereits voll sind, und das ankommende Elektron in eine höhere Hauptquantenhülle eintreten muss. Die hohe Stabilität von Edelgasen begründet ihre chemische Reaktionsträgheit, was viele industrielle Anwendungen findet. Zum Beispiel wird Argon zur Herstellung von gasgefüllten elektrischen Glühbirnen verwendet, zur Verhinderung der Oxidation der Wolframfilamente, was die Lebensdauer der Glühbirne verlängert.Helium wird zur Schaffung einer inerten Atmosphäre beim Schmelzen und Schweißen von leicht oxidierbaren Metallen verwendet. Ursprünglich dachte man, dass Edelgase chemisch völlig reaktionsunfähig sind und sie wurden Inertgase genannt. In den frühen sechziger Jahren, hat Neil Barlett einige Ausnahmen entdeckt.Zum Beispiel Xenon, dass die niedrigste Ionisierungsenergie von allen Edelgasen hat, reagiert mit dem elektronegativsten Element Fluor. Xenondifluorid, dass man durch Erhitzen eines Überschusses an Xenongas mit Fluor erhält, ist ein stabiler kristalliner Stoff. Andere Verbindungen, wie Xenon-Tetrafluorid und Xenon Hexafluorid, können ebenfalls auf ähnliche Weise hergestellt werden.Xenon-Verbindungen können mit dem elektronegativen Element Sauerstoff hergestellt werden, indem Fluoratome in Xenonfluoriden durch Sauerstoff ersetzt werden. Zum Beispiel reagiert Xenonhexafluorid mit Wasser unter Bildung einer Lösung an Xenontrioxid.

8.8:

Edelgase


The elements in group 18 are noble gases (helium, neon, argon, krypton, xenon, and radon). They earned the name “noble” because they were assumed to be nonreactive since they have filled valence shells. In 1962, Dr. Neil Bartlett at the University of British Columbia proved this assumption to be false.

These elements are present in the atmosphere in small amounts. Some natural gas contains 1–2% helium by mass. Helium is isolated from natural gas by liquefying the condensable components, leaving only helium as a gas. Radon comes from other radioactive elements. More recently, it was observed that this radioactive gas is present in very small amounts in soils and minerals. Its accumulation in well-insulated, tightly sealed buildings, however, constitutes a health hazard, primarily lung cancer.

The boiling points and melting points of the noble gases are extremely low relative to those of other substances of comparable atomic or molecular masses. This is because only weak London dispersion forces are present, and these forces can hold the atoms together only when molecular motion is very slight, as it is a very low temperature.

The full s and p orbitals of the valence shell add stability to the noble gases. These elements have the largest first ionization energies, indicating that the removal of an electron is difficult. Going down the group, atomic radius increases and ionization energy decreases. The positive electron affinity values of these elements reveal that they are unlikely to gain electrons as well. Table 1 summarizes the properties of the noble gases.

Table 1: Properties of the Noble Gases.

Element Electron Configuration Atomic Radius (pm) IE1 (kJ/mol) EA (kJ/mol) Density at STP (g/L)
He 1s2 32 2370 +20 0.18
Ne [He] 2s22p6 70 2080 −30 0.90
Ar [Ne] 3s23p6 98 1520 +35 1.78
Kr [Ar] 4s24p6 112 1350 +40 3.74
Xe [Kr] 5s25p6 130 1170 +40 5.90

Argon is useful in the manufacture of gas-filled electric light bulbs, where its lower heat conductivity and chemical inertness made it preferable to nitrogen for inhibiting the vaporization of the tungsten filament and prolonging the life of the bulb. Fluorescent tubes commonly contain a mixture of argon and mercury vapor. Argon is the third most abundant gas in dry air.

Helium is used for filling balloons and lighter-than-air craft because it does not burn, making it safer to use than hydrogen. Liquid helium (boiling point, 4.2 K) is an important coolant to reach the low temperatures necessary for cryogenic research, and it is essential for achieving the low temperatures necessary to produce superconduction in traditional superconducting materials used in powerful magnets and other devices.

Neon is a component of neon lamps and signs. Passing an electric spark through a tube containing neon at low pressure generates the familiar red glow of neon. It is possible to change the color of the light by mixing argon or mercury vapor with the neon or by utilizing glass tubes of a special color.

Krypton-xenon flash tubes are used to take high-speed photographs. An electric discharge through such a tube gives a very intense light that lasts only 1/50,000 of a second. Krypton forms a difluoride, which is thermally unstable at room temperature.

Stable compounds of xenon form when xenon reacts with fluorine. Xenon difluoride, XeF2, forms after heating an excess of xenon gas with fluorine gas and then cooling. The material forms colorless crystals, which are stable at room temperature in a dry atmosphere. Xenon tetrafluoride, XeF4, and xenon hexafluoride, XeF6, are prepared in an analogous manner, with a stoichiometric amount of fluorine and an excess of fluorine, respectively. Compounds with oxygen are prepared by replacing fluorine atoms in the xenon fluorides with oxygen.

When XeF6 reacts with water, a solution of XeO3 results and the xenon remains in the +6 oxidation state. Dry, solid xenon trioxide, XeO3, is extremely explosive — it will spontaneously detonate.

Unstable compounds of argon form at low temperatures, but stable compounds of helium and neon are not known.

This text is adapted from Openstax, Chemistry 2e, Section 18.2: Occurrence, Preparation, and the Properties of Noble Gases.