Back to chapter

10.7:

תאוריית קשר הערכיות

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Valence Bond Theory

Languages

Share

לקומפלקסי קוארדינציה יש מבנים גאומטריים שונים כגון אוקטהדרלי, טטרהדרלי ומישורי מרובע, על פי אורביטלי המתכת המשתתפים בקשרי הקואורדינציה הקוולנטיים. תאוריית הקשר הערכי מסבירה את זה על בסיס הכלאת המתכת של אורביטלי s, p ו-d. הכלאה מספקת אורביטלים ריקים בעלי אנרגיות שוות ערך שיכולים להיות קוארדינטיבים לאורביטלי הליגנדות המלאים.חשבו על הקומפלקס האוקטהדרלי, hexafluorocobaltate(III)ליון Co⁺³ יש אורביטלי 3d⁶ מלאים חלקית ואורביטלי 4s ריקים, 4p ו4d אורביטלי כדי ליצור את הקומפלקס, ששת אוריבטלי המתכת הריקים, 4s, 4p ושני 4d, מוכלאים בשישה אורביטלי sp³d², שמצביעים לעבר הפינות של אוקטהדרון. האורביטלים המוכלאים מקבלים זוגות של אלקטרונים לא קושרים משש קבוצות הפלואוריד ויוצרים קומפלקס פרמגנטי. ב-hexamminecobalt(III)קבוצות האמינו גורמות לאלקטרוני ה-3d של קובלט להתארגן מחדש, מה שיוצר שני אורביטלי 3d ריקים.אלה משתלבים עם אורביטלי 4s ו-4p כדי ליצור שישה אורביטלי הכלאה d²sp³, הנקשרים קוארדינטיבית לשש קבוצות האמוניה ויוצרים את התקומפלקס הדיאמגנטי. עכשיו חשבו על קומפלקס טטרהדרלי טטרכולורוניקלאט יון Ni² בנוי בתצורת 3d⁸. אורביטלי 4s ו-4p הריקים מוכלאים זה עם זה ויוצרים ארבעה אורביטלי sp³ המצביעים לעבר הפינות של טטרהדר.כאן ארבעה זוגות של אלקטרונים, זוג מכל קבוצה כלורידית, מאכלס את האורביטלים המוכלאים ונוצרת תרכובת פרמגנטית. לבסוף, בואו נבחן תרכובת מרובעת-מישורית כמו טטרכלורופלטינאט. יון Pt² בנוי בתצורת d⁸.קבוצות הכלוריד מאלצות את אלקטרוני 3d של המתכת להתארגן מחדש, וכך נוצרים אורביטלים ריקים. האורביטל הריק משתלב עם אורביטל 4s ושני אורביטלי 4p ויוצר ארבעה אורביטלי dsp² מוכלאים המכוונים לעבר פינות מרובע. עם קבלת זוגות האלקטרונים מהליגנדות הכלורידיות, נוצר קומפלקס דיאמגנטית.למרות שקומפלקסי קוארדינציה שונים זו מזו בצבעים ובהתנהגות המגנטית שלהן, VBT לא מסבירה את הספקטרום האלקטרוני שלהן ואת השינוי בהתנהגותן המגנטית עם שינוי בטמפרטורה.

10.7:

תאוריית קשר הערכיות

Coordination compounds and complexes exhibit different colors, geometries, and magnetic behavior, depending on the metal atom/ion and ligands from which they are composed. In an attempt to explain the bonding and structure of coordination complexes, Linus Pauling proposed the valence bond theory, or VBT, using the concepts of hybridization and the overlapping of the atomic orbitals. According to VBT, the central metal atom or ion (Lewis acid) hybridizes to provide empty orbitals of suitable energy. These orbitals accept electron pairs from filled ligand orbitals (Lewis bases) to form coordinate covalent metal-ligand bonds. The type of hybridization and the number of hybrid orbitals determine the geometry of the complex.

Geometry  Hybridization  
Linear sp
Tetrahedral sp3
 Square planar  dsp2
Octahedral  d2sp3 or sp3d

In a tetrahedral complex, three vacant p orbitals and one vacant s orbital on the metal hybridize to form four sp3 hybrid orbitals, which overlap with the filled ligand orbitals to form the covalent coordinate bond. Similarly, six hybrid orbitals are created for the octahedral complexes by mixing the vacant atomic orbitals on the central metal ion (d2sp3 or sp3d2 hybridization). In the case of linear complexes, the one s and one p orbitals overlap, leading to the formation of two sp hybrid orbitals.

Inner and Outer Orbital Complexes

The strength of the approaching ligands influence the hybridization of the atomic orbitals on the central metal ion. Consider the example of an octahedral complex such as [Co(NH3)6]3+. The Co3+ ion contains six electrons in the 3d orbitals and has vacant 4s and 4p orbitals. The incoming NH3 ligands, which are strong field ligands, force the unpaired 3d electrons to rearrange and pair up with the other 3d electrons. This creates two vacant 3d orbitals, which combine with one 4s and three 4p orbitals to form six equivalent d2sp3 hybrid orbitals. The six hybrid orbitals overlap with the filled atomic orbitals of the ammonia ligands to form the octahedral complex. Since the inner d (3d) orbitals on the metal participate in hybridization, [Co(NH3)6]3+ is an inner orbital complex. Due to the absence of unpaired electrons, the complex is diamagnetic, or called a low spin complex.

Image1

      In another octahedral complex like [Co(F)6]3+, since the fluoride ligand is a weak field ligand, the 3d6 electrons of the metal do not rearrange. To provide vacant orbitals for hybridization, two of the outermost empty 4d orbitals combine with the one 4s and three 4p orbitals to form six vacant hybrid orbitals. Since the outermost d orbitals are used, the hybridization is referred to as sp3d2 hybridization, and the complex is called an outer orbital complex. The presence of unpaired electrons makes the complex paramagnetic, and hence these complexes are also known as high spin complexes.

Image2

High-spin or outer orbital complexes are more labile and less stable (due to the higher energies of sp3d2 orbitals) compared to the low-spin or inner orbital complexes.