Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

19.10: ATP Synthase: Structure
TABLE OF
CONTENTS

JoVE Core
Cell Biology

A subscription to JoVE is required to view this content.

Education
ATP Synthase: Structure
 
TRANSCRIPT

19.10: ATP Synthase: Structure

ATP synthase or ATPase is among the most conserved proteins found in bacteria, mammals, and plants. This enzyme can catalyze a forward reaction in response to the electrochemical gradient, producing ATP from ADP and inorganic phosphate. ATP synthase can also work in a reverse direction by hydrolyzing ATP and generating an electrochemical gradient. Different forms of ATP synthases have evolved special features to meet the specific demands of the cell. Based on their specific feature, ATP synthases are classified as F (Phosphorylation factor), V (Vacuole), A (Archaea), P (Proton), or E (Extracellular). The mammalian ATP synthase is also known as the complex five of the respiratory chain complexes in the inner mitochondrial membrane.

It has been estimated that an average adult body produces 40 kg of ATP every day. Therefore, ATP synthesis is one of the most crucial and frequent processes that occur in the body.

Any mutation or defects in the ATP synthase enzyme can lead to fatal diseases. Mutation in one or more subunits of ATP synthase can inhibit their assembly into a functional enzyme. Consequently, this can lead to congenital defects such as cardiomyopathy, hepatomegaly, and lactic acidosis, causing the death of a newborn. Further, a mutation in the α subunit has been associated with several pathologies including, retinitis pigmentosa, neuropathy, familial bilateral striatal necrosis, and one type of Leigh syndrome, which is a neuromuscular disorder in young children. Also, the reduced expression of the β subunit and accumulation of α subunit in the cytosol can cause Alzheimer's disease.


Suggested Reading

Tags

ATP Synthase ATPase Conserved Proteins Enzyme Electrochemical Gradient ATP Production ADP And Inorganic Phosphate Reverse Reaction Hydrolyzing ATP Special Features Cell Demands Classification Of ATP Synthases Mammalian ATP Synthase Respiratory Chain Complexes Mitochondrial Membrane ATP Synthesis Mutation Defects In ATP Synthase Enzyme Fatal Diseases Congenital Defects Cardiomyopathy Hepatomegaly Lactic Acidosis Newborn Death Retinitis Pigmentosa Neuropathy Familial Bilateral Striatal Necrosis Leigh Syndrome

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter