Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

3.6: Endergonic and Exergonic Reactions in the Cell
TABLE OF
CONTENTS

JoVE Core
Cell Biology

A subscription to JoVE is required to view this content.
You will only be able to see the first 20 seconds.

Education
Endergonic and Exergonic Reactions in the Cell
 
TRANSCRIPT

3.6: Endergonic and Exergonic Reactions in the Cell

If energy releases during a chemical reaction, then the resulting value will be a negative number. In other words, reactions that release energy have a ∆G < 0. A negative ∆G also means that the reaction's products have less free energy than the reactants because they gave off some free energy during the reaction. Scientists call reactions with a negative ∆G, and which consequently release free energy, exergonic reactions. Exergonic means energy is exiting the system. We also refer to these reactions as spontaneous reactions, because they can occur without adding energy into the system. Understanding which chemical reactions are spontaneous and release free energy is extremely useful for biologists because these reactions can be harnessed to perform work inside the cell. Contrary to the everyday use of the term, a spontaneous reaction is not one that suddenly or quickly occurs. Rusting iron is an example of a spontaneous reaction that occurs slowly, little by little, over time.

If a chemical reaction requires an energy input, then the ∆G for that reaction will be a positive value. In this case, the products have more free energy than the reactants. Thus, we can think of the reactions' products as energy-storing molecules. We call these chemical reactions endergonic reactions, and they are non-spontaneous. An endergonic reaction will not take place on its own without adding free energy.

For example, building complex molecules, such as sugars, from simpler ones is an anabolic process and requires energy. Therefore, the chemical reactions involved in anabolic processes are endergonic reactions. Alternatively, the catabolic process of breaking sugar down into simpler molecules releases energy in a series of exergonic reactions. 

This text is adapted from Openstax, Biology 2e, Section 6.2: Potential, Kinetic, Free, and Activation Energy.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter