Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

13.6: NMR and Mass Spectroscopy of Carboxylic Acids
TABLE OF
CONTENTS

JoVE Core
Organic Chemistry

A subscription to JoVE is required to view this content.

Education
NMR and Mass Spectroscopy of Carboxylic Acids
 
TRANSCRIPT

13.6: NMR and Mass Spectroscopy of Carboxylic Acids

In ¹H NMR spectroscopy, acidic protons (–COOH) of carboxylic acids are highly deshielded and absorb far downfield, at around 9–12 ppm. The chemical shift value depends on the concentration and solvent used.

While α protons of carboxylic acids absorb at 2–2.5 ppm, β protons absorb further upfield.

Carboxylic acids are easily identified by dissolving them in deuterium oxide, which results in a rapid exchange of the acidic protons with deuterium. This leads to the disappearance of the acidic proton signal in the spectrum.

In 13C NMR spectroscopy of carboxylic acids, carbonyl carbons absorb around 160–180 ppm. However, they absorb at a lower chemical shift (or at a higher field) than the aldehydes and ketones’ carbonyl carbons. It is due to the high shielding effect of the carboxylate oxygen’s unshared pair of electrons. α carbons of carboxylic acids absorb at 20–40 ppm.

In mass spectroscopy, carboxylic acids show a small molecular ion peak. McLafferty fragmentation of carboxylic acids yields even-numbered mass fragment ions (base peak) with the loss of an alkene. Another prominent fragmentation happens with the loss of an alkyl radical, yielding a resonance-stabilized cation (has odd mass). Aromatic carboxylic acids give prominent fragment ion peaks with the loss of –OH and –C=O, apart from the molecular ion peaks.

Tags

NMR Mass Spectroscopy Carboxylic Acids ¹H NMR Spectroscopy Acidic Protons Deshielded Chemical Shift Value Concentration Solvent &945; Protons &946; Protons Deuterium Oxide Exchange Disappearance Of Proton Signal 13C NMR Spectroscopy Carbonyl Carbons Aldehydes Ketones Shielding Effect Carboxylate Oxygen's Unshared Pair Of Electrons &945; Carbons Mass Spectroscopy Molecular Ion Peak McLafferty Fragmentation Alkene Loss Alkyl Radical Loss Resonance-stabilized Cation Aromatic Carboxylic Acids

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter