Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

30.12: Maxwell's Equation Of Electromagnetism

JoVE Core

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Maxwell's Equation Of Electromagnetism

30.12: Maxwell's Equation Of Electromagnetism

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to understanding the nature of Saturn's rings. He is probably best known for having combined existing knowledge on the laws of electricity and magnetism with his insights into a complete overarching electromagnetic theory, which is represented by Maxwell's equations.

The four basic laws of electricity and magnetism were discovered experimentally through the work of physicists such as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the incompleteness of Ampère's law as their cause.

Maxwell's equations led to the prediction of electromagnetic waves that can travel through space without a material medium, implying that the speed of electromagnetic waves is equal to the speed of light. Prior to Maxwell's work, experiments had already indicated that light was a wave phenomenon, although the nature of the waves was yet unknown. So, light was known to be a wave, and Maxwell predicted the existence of electromagnetic waves that traveled at the speed of light.

The conclusion seemed inescapable that light must be a form of electromagnetic radiation. However, Maxwell's theory showed that other wavelengths and frequencies than those of light were possible for electromagnetic waves. He showed that electromagnetic radiation with the same fundamental properties as visible light should exist at any frequency. It remained for others to test and confirm this prediction.

Suggested Reading


Maxwell's Equation Electromagnetism James Clerk Maxwell Nineteenth Century Physics Kinetic Theory Of Gases Color Vision Saturn's Rings Electromagnetic Theory Maxwell's Equations Laws Of Electricity And Magnetism Oersted Coulomb Gauss Faraday Ampère's Law Electromagnetic Waves Speed Of Light Wave Phenomenon Electromagnetic Radiation

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter