Summary

फाइबर आरेखण विधि का प्रयोग Fabricating Metamaterials

Published: October 18, 2012
doi:

Summary

आवृत्तियों terahertz Metamaterials अद्वितीय अवसर प्रदान करते हैं, लेकिन थोक में बनाना चुनौतीपूर्ण हैं. हम microstructured बहुलक ऑप्टिकल metamaterials सस्ते में एक औद्योगिक पैमाने पर संभावित बनाना फाइबर के लिए निर्माण प्रक्रिया लिए अनुकूलित करेंगे. हम polymethylmethacrylate ~ 10 सुक्ष्ममापी व्यास ईण्डीयुम ~ 100 सुक्ष्ममापी, है जो प्रदर्शन एक terahertz plasmonic प्रतिक्रिया द्वारा अलग तारों फाइबर युक्त उत्पादन.

Abstract

Metamaterials are man-made composite materials, fabricated by assembling components much smaller than the wavelength at which they operate 1. They owe their electromagnetic properties to the structure of their constituents, instead of the atoms that compose them. For example, sub-wavelength metal wires can be arranged to possess an effective electric permittivity that is either positive or negative at a given frequency, in contrast to the metals themselves 2. This unprecedented control over the behaviour of light can potentially lead to a number of novel devices, such as invisibility cloaks 3, negative refractive index materials 4, and lenses that resolve objects below the diffraction limit 5. However, metamaterials operating at optical, mid-infrared and terahertz frequencies are conventionally made using nano- and micro-fabrication techniques that are expensive and produce samples that are at most a few centimetres in size 6-7. Here we present a fabrication method to produce hundreds of meters of metal wire metamaterials in fiber form, which exhibit a terahertz plasmonic response 8. We combine the stack-and-draw technique used to produce microstructured polymer optical fiber 9 with the Taylor-wire process 10, using indium wires inside polymethylmethacrylate (PMMA) tubes. PMMA is chosen because it is an easy to handle, drawable dielectric with suitable optical properties in the terahertz region; indium because it has a melting temperature of 156.6 °C which is appropriate for codrawing with PMMA. We include an indium wire of 1 mm diameter and 99.99% purity in a PMMA tube with 1 mm inner diameter (ID) and 12 mm outside diameter (OD) which is sealed at one end. The tube is evacuated and drawn down to an outer diameter of 1.2 mm. The resulting fiber is then cut into smaller pieces, and stacked into a larger PMMA tube. This stack is sealed at one end and fed into a furnace while being rapidly drawn, reducing the diameter of the structure by a factor of 10, and increasing the length by a factor of 100. Such fibers possess features on the micro- and nano- scale, are inherently flexible, mass-producible, and can be woven to exhibit electromagnetic properties that are not found in nature. They represent a promising platform for a number of novel devices from terahertz to optical frequencies, such as invisible fibers, woven negative refractive index cloths, and super-resolving lenses.

Protocol

अवलोकन समग्र / ईण्डीयुम PMMA फाइबर (3 चित्रा) एक एक एकल ईण्डीयुम तार (2 चित्रा) है, जो खुद को उपलब्ध PMMA ट्यूब और तार से तैयार रहना होगा सहित PMMA तंतुओं के ढेर ड्राइंग द्वारा निर्मित है. प्रस?…

Representative Results

Metamaterial फाइबर वर्णित तकनीक का उपयोग कर उत्पादन किया गया था. वे 1 मिमी PMMA 100 सुक्ष्ममापी व्यास निरंतर ईण्डीयुम तार युक्त फाइबर, चित्रा 2, जो बारी में 1 मिमी ईण्डीयुम एक 10 मिमी बहुलक जैकेट के अंदर निहित तार?…

Discussion

यहाँ प्रस्तुत तकनीक microscale सुविधा आकार के साथ लगातार तीन आयामी metamaterials किलोमीटर के निर्माण की अनुमति देता है, THz रेंज में एक plasmonic प्रतिक्रिया (और इस प्रकार एक अनुरूप बिजली permittivity) रखने, प्रभावी ढंग से एक उच्च पास …

Disclosures

The authors have nothing to disclose.

Acknowledgements

इस शोध ऑस्ट्रेलियाई अनुसंधान परिषद डिस्कवरी परियोजनाएं धन योजना (परियोजना संख्या DP120103942) के तहत समर्थित किया गया. BTK और ए.ए. एक ऑस्ट्रेलियाई अनुसंधान परिषद भविष्य (FT0991895) फैलोशिप और ऑस्ट्रेलियाई रिसर्च (DP1093789) क्रमशः फैलोशिप के प्राप्तकर्ता हैं.

Materials

Name of Reagent/Material Company Catalogue Number Comments
Indium 99.99% Wire, 1 mm diameter AIM Specialty Available on request www.aimspecialty.com
http://www.aimspecialty.com/Portals/0/Files/Indium.pdf
2-Propanol(Isopropanol) Sigma-Aldrich Product Number
190764
http://www.sigmaaldrich.com/chemistry/solvents/products.html?TablePage=17292086
Adhesive tape Staples    
One Wrap PTFE Tape, 5 ml x 12 mmW x 0.2 mmT RS Components RS Stock Number
231-964
http://uk.rs-online.com/web/p/ptfe-tapes/0231964/
50 Micron Aluminium Foil Tape Advance Adhesive Tapes AT506 http://www.advancetapes.com/Products/types/9/page1/81
Blu-tak Bostik   http://www.blutack.com/index.html
Araldite Quick Set Selleys   http://selleys.com.au/adhesives/household-adhesive/araldite/quick-set
PMMA tubes:
– ID 6 mm, OD 12 mm
– ID 9 mm, OD 12 mm
B & M Plastics: Plastic Fabrication Available on request http://www.bmplastics.com.au/about-us.htm
      Equipment Requirements
     
  • Fibre draw tower with furnaces of maximum temperatures of at least 200 °C (Heathway Polymer Draw Tower with Preform and Fibre draw facilities). A photograph of the draw tower is shown in Figure 5.
  • Annealing oven of maximum temperatures of at least 90 °C.
  • Optical microscope.
  • Hot air gun.
  • Vacuum pump.
  • Top preform extender (metal tube of 30 cm length and 12 mm diameter).
  • Primary draw bottom extender (metal tube of 100 cm length and 12 mm diameter).
  • Secondary draw bottom extender (PMMA tube of 20 cm length and 12 mm diameter).

References

  1. Cai, W., Shalaev, V. . Optical Metamaterials: Fundamentals and Applications. , (2010).
  2. Pendry, J. B., Holden, A. J. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett. 76, 4773-4776 (1996).
  3. Schurig, D., Mock, J. J. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314, 977-980 (2006).
  4. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics. 1, 41-48 (2007).
  5. Liu, Z., Lee, H. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 315, (2007).
  6. Boltasseva, A., Shalaev, V. M. Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials. 2, 1-17 (2008).
  7. Soukoulis, C. M., Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics. 5, 523-530 (2011).
  8. Tuniz, A., Kuhlmey, B. T. Drawn metamaterials with plasmonic response at terahertz frequencies. Appl. Phys. Lett. 96, 191101 (2010).
  9. Argyros, A. Microstructured polymer optical fibers. J. Lightwave Technol. 27, 1571-1579 (2009).
  10. Donald, I. W. Production, properties and applications of microwire and related products. J. Mater. Sci. 22, 2661-2679 (1987).
  11. Grischkowsky, D., Keiding, S. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B. 7, 2006-2015 (1990).
  12. Wang, A., Tuniz, A. Fiber metamaterials with negative magnetic permeability in the terahertz. Opt. Mat. Express. 1, 115-120 (2010).
  13. Tuniz, A., Lwin, R. Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range. Opt. Express. 19, 16480-16490 (2011).

Play Video

Cite This Article
Tuniz, A., Lwin, R., Argyros, A., Fleming, S. C., Kuhlmey, B. T. Fabricating Metamaterials Using the Fiber Drawing Method. J. Vis. Exp. (68), e4299, doi:10.3791/4299 (2012).

View Video