Summary

小口径支架移植物使用静电及球囊扩张裸金属支架的制作

Published: October 26, 2016
doi:

Summary

In the protocol, we present a method to manufacture a small caliber stent-graft by sandwiching a balloon expandable stent between two electrospun nanofibrous polyurethane layers.

Abstract

Stent-grafts are widely used for the treatment of various conditions such as aortic lesions, aneurysms, emboli due to coronary intervention procedures and perforations in vasculature. Such stent-grafts are manufactured by covering a stent with a polymer membrane. An ideal stent-graft should have a biocompatible stent covered by a porous, thromboresistant, and biocompatible polymer membrane which mimics the extracellular matrix thereby promoting injury site healing. The goal of this protocol is to manufacture a small caliber stent-graft by encapsulating a balloon expandable stent within two layers of electrospun polyurethane nanofibers. Electrospinning of polyurethane has been shown to assist in healing by mimicking native extracellular matrix, thereby promoting endothelialization. Electrospinning polyurethane nanofibers on a slowly rotating mandrel enabled us to precisely control the thickness of the nanofibrous membrane, which is essential to achieve a small caliber balloon expandable stent-graft. Mechanical validation by crimping and expansion of the stent-graft has shown that the nanofibrous polyurethane membrane is sufficiently flexible to crimp and expand while staying patent without showing any signs of tearing or delamination. Furthermore, stent-grafts fabricated using the methods described here are capable of being implanted using a coronary intervention procedure using standard size guide catheters.

Introduction

冠状动脉介入治疗过程会由于斑块和血管壁的破坏显著血管壁损伤。这导致再狭窄,静脉移植物周围栓塞,冠状动脉管腔1-4的不连续性。为了避免这些并发症,一个有希望的战略将是覆盖了血管成形术的网站,这将潜在地抑制再狭窄,从血管腔的不连续性降低风险,防止周围栓塞血管表面。以前的研究已经比较裸金属支架,以支架移植物与支架移植5积极成果。研究人员已经使用了几种材料制造的膜,以覆盖支架。这包括合成的材料,如聚乙烯酯(PET),聚四氟乙烯(PTFE),聚氨酯(PU),以及硅或自体血管组织制造覆膜支架6-9。用于覆盖所述支架的理想移植材料应抗血栓的,非biodegradable,并应与没有过度增殖,炎症10天然组织整合。用于覆盖支架移植物材料还应促进支架移植物的愈合。

支架移植物被广泛用于主动脉缩窄,颈动脉的假性动脉瘤,动静脉瘘的治疗中,退化静脉移植,并大到巨型脑动脉瘤。但小口径支架移植物的发展是通过维持低轮廓和灵活性,这有助于在支架移植物11-14的部署的能力的限制。 PU为具有良好的机械强度,这是实现低轮廓和良好的柔韧性15,16所期望的性状的弹性体聚合物。除了具有良好的产能,支架移植还应促进快速愈合和内皮。 PU覆膜支架移植物表现出更好的生物相容性和增强的内皮17。研究者此前试图endothelialize PU与内皮细胞接种17它们覆盖支架移植物。聚氨酯的静电以创建纳米纤维基质已被证明是一种有价值的技术用于生产血管的移植物18,19。模仿天然细胞外基质的结构的纳米纤维的存在也是已知的,以促进内皮细胞增殖20,21。静电纺丝还允许在材料22的厚度的控制。制成的PU小口径血管移植已经研究了通过使用修饰如表面涂层,抗凝血剂,以及细胞增殖抑制剂,以促进愈合。所有这些修改都旨在调解主机接受和促进愈合的移植物23。

我们小组已经开发出可在动物模型24-26部署的球囊可扩张裸金属支架。电纺聚氨酯网格和球的组合OON扩张支架,使我们能够产生小口径球囊扩张支架移植物。大多数目前可用的支架移植物的经股动脉介入过程期间被引入,但只有少数商业覆膜支架可以引入1法国尺寸比为一个未膨胀的气球27需要更大。在这项研究中,我们通过包封静电聚氨酯的两层可被传递到一个经皮介入过程使用标准的8-9法国导向导管冠状动脉之间的球囊可扩张支架开发了小口径血管支架 – 移植物。

Protocol

1.聚氨酯静电的心轴收集 准备为芯棒静电 熔融约8ml生物相容的,食品级,水溶性载体材料在量筒(约9毫米直径和110毫米深)使用烘箱在155℃。 蘸直径为3毫米,长100毫米的不锈钢心轴,得到心轴的表面上的支撑材料的涂层。之前浸渍,放置心轴在烘箱中在155℃约15分钟,以提高心轴表面,这有助于在表面与熔融载体材料润湿的温度。 让浸渍芯棒冷却至约140…

Representative Results

我们electrospinner设置( 图1)导致了高品质的聚氨酯纳米纤维( 图2)。的支架-移植物是通过电的聚氨酯的内层到心轴,在该层之上滑动裸金属支架,和静电聚氨酯第二外层( 图3)制造的。聚氨酯纳米纤维以50微米/小时的速率,这导致在100μm的内层和150微米的支架移植物的外层电纺丝。用这里介绍的协议静电导致均匀的纳米纤维的聚氨酯的层( 图4…

Discussion

We have developed a fabrication technique for a small caliber stent-graft which can be deployed using a standard percutaneous coronary intervention (PCI) procedure. Stent-grafts currently available are limited in their ability to maintain a low profile and flexibility for deployment. Bare metal stents developed by our group in our previous studies have proven to assist in rapid healing of the stented artery24,26. Various polymers have been electrospun by other groups and polyurethane has been proven biostable …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank the Division of Engineering, Mayo Clinic for their technical support. This study was financially supported by European Regional Development Fund – FNUSA-ICRC (No. CZ.1.05/1.100/02.0123), National Institutes of Health (T32 HL007111), American Heart Association Scientist Development Grant (AHA #06-35185N), and The Grainger Innovation Fund – Grainger Foundation.

Materials

Glass syringe Air Tite 7.140-33 Syringe for spinneret
Graduated cylinder 5 mL Fisher Scientific 08-552-4G 5 mL pyrex graduated cylinder about 9mm diameter and 11 cm long
High voltage generator Bertan Accociates, Inc. 205A-30P Used to apply voltage difference across spinneret and collector
Laboratory mixer with rpm control Scilogex SCI-84010201 Available from various laboratory equipment suppliers
Polyurethane DSM BioSpan SPU Biospan Segmented Polyurethane
Rubber sheet McMaster Carr 1370N11 Used to insulate syringe during electrospinning
Stainless steel mandrel N/A N/A Manufactured 
Stainless steel needle Hamilton 91018 Used as spinneret in electrospinning
Support material EnvisionTec B04-HT-DEMOMAT Biocompatible water soluble material
Syringe Pump Harvard Apparatus 55-3333

References

  1. Elsner, M., et al. Coronary stent grafts covered by a polytetrafluoroethylene membrane. Am. J. Cardiol. 84 (3), 335-338 (1999).
  2. Störger, H., Haase, J. Polytetrafluoroethylene-Covered Stents: Indications, Advantages, and Limitations. J. Interv. Cardiol. 12 (6), 451-456 (1999).
  3. Moreno, P. R., et al. Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina. Circulation. 94 (12), 3098-3102 (1996).
  4. Briguori, C., Sarais, C., Colombo, A. The polytetrafluoroethylene-covered stent: a device with multiple potential advantages. Int. J. Cardiovasc. Interv. 4 (3), 145-149 (2001).
  5. Qureshi, M. A., Martin, Z., Greenberg, R. K. Endovascular management of patients with Takayasu arteritis: stents versus stent grafts. Semin. Vasc. Surg. 24 (1), 44-52 (2011).
  6. Ahmadi, R., Schillinger, M., Maca, T., Minar, E. Femoropopliteal arteries: immediate and long-term results with a Dacron-covered stent-graft. Radiology. 223 (2), 345-350 (2002).
  7. Geremia, G., et al. Experimental arteriovenous fistulas: treatment with silicone-covered metallic stents. AJNR. Am. J. Neuroradiol. 18 (2), 271-277 (1997).
  8. Saatci, I., et al. Treatment of internal carotid artery aneurysms with a covered stent: experience in 24 patients with mid-term follow-up results. AJNR. Am. J. Neuroradiol. 25 (10), 1742-1749 (2004).
  9. Stefanadis, C., et al. Stents Wrapped in Autologous Vein: An Experimental Study1. J. Am. Coll. Cardiol. 28 (4), 1039-1046 (1996).
  10. Palmaz, J. C. Review of polymeric graft materials for endovascular applications. J. Vasc. Interv. Radiol. 9, 7-13 (1998).
  11. Bruckheimer, E., Dagan, T., Amir, G., Birk, E. Covered Cheatham-Platinum stents for serial dilation of severe native aortic coarctation. Catheter Cardiovasc. Interv. 74 (1), 117-123 (2009).
  12. Tzifa, A., et al. Covered Cheatham-platinum stents for aortic coarctation: early and intermediate-term results. J. Am. Coll. Cardiol. 47 (7), 1457-1463 (2006).
  13. Kuraishi, K., et al. Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments. J. Biomed. Mater. Res. Part B Appl. Biomater. 88 (1), 230-239 (2009).
  14. Pant, S., Bressloff, N. W., Limbert, G. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model Mechanobiol. 11 (1-2), 61-82 (2012).
  15. Muller-Hulsbeck, S., et al. Experience on endothelial cell adhesion on vascular stents and stent-grafts: first in vitro results. Invest. Radiol. 37 (6), 314-320 (2002).
  16. Sarkar, S., Salacinski, H. J., Hamilton, G., Seifalian, A. M. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31 (6), 627-636 (2006).
  17. Shirota, T., Yasui, H., Shimokawa, H., Matsuda, T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials. 24 (13), 2295-2302 (2003).
  18. Grasl, C., et al. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res. A. 93 (2), 716-723 (2010).
  19. Kidoaki, S., Kwon, I. K., Matsuda, T. Structural features and mechanical properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res. Part B Appl. Biomater. 76 (1), 219-229 (2006).
  20. Stegemann, J. P., Kaszuba, S. N., Rowe, S. L. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13 (11), 2601-2613 (2007).
  21. Sankaran, K. K., Subramanian, A., Krishnan, U. M., Sethuraman, S. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnol. J. 10 (1), 96-108 (2015).
  22. Gibson, P., Schreuder-Gibson, H., Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf., A. 187, 469-481 (2001).
  23. Zdrahala, R. J. Small caliber vascular grafts. Part II: Polyurethanes revisited. J. Biomater. Appl. 11 (1), 37-61 (1996).
  24. Uthamaraj, S., et al. Design and validation of a novel ferromagnetic bare metal stent capable of capturing and retaining endothelial cells. Ann. Biomed. Eng. 42 (12), 2416-2424 (2014).
  25. Tefft, B. J., et al. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles. J. Vis. Exp. (105), e53099 (2015).
  26. Uthamaraj, S., et al. Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention. J. Vis. Exp. (103), e53100 (2015).
  27. de Giovanni, J. V. Covered stents in the treatment of aortic coarctation. J. Interv. Cardiol. 14 (2), 187-190 (2001).
  28. Hans, F. J., et al. Treatment of wide-necked aneurysms with balloon-expandable polyurethane-covered stentgrafts: experience in an animal model. Acta. Neurochir. (Wien). 147 (8), 871-876 (2005).
  29. Hasan, A., et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta. Biomater. 10 (1), 11-25 (2014).

Play Video

Cite This Article
Uthamaraj, S., Tefft, B. J., Jana, S., Hlinomaz, O., Kalra, M., Lerman, A., Dragomir-Daescu, D., Sandhu, G. S. Fabrication of Small Caliber Stent-grafts Using Electrospinning and Balloon Expandable Bare Metal Stents. J. Vis. Exp. (116), e54731, doi:10.3791/54731 (2016).

View Video