This content is Free Access.
Electric Potential
  • 00:06Overview
  • 00:54Principles of Electric Potential
  • 04:01Electric Potential Around a Charged Sphere
  • 05:21Applications
  • 06:28Summary

Elektrisches Potential

English

Share

Overview

Quelle: Yong P. Chen, PhD, Department of Physics & Astronomie, College of Science, Purdue University, West Lafayette, IN

Elektrisches Potential, auch bekannt als “Spannung”, misst die elektrische potentielle Energie pro Einheit berechnet. Elektrische Feld ist eine skalare Größe und ist für viele elektrische Effekte von grundlegender Bedeutung. Wie potentielle Energie ist was physikalisch sinnvolle der Unterschied des elektrischen Potenzials. Beispielsweise bezieht sich die räumliche Variation in das elektrische Potenzial auf das elektrische Feld, die Anlass für die elektrische Kraft auf eine Gebühr. Der Unterschied des elektrischen Potenzials zwischen zwei Punkten in einem Widerstand treibt den elektrischen Stromfluss.

Dieses Experiment wird ein Voltmeter und einer Leuchtstoffröhre verwenden, um das elektrische Potential (genauer gesagt, die Potentialdifferenz zwischen zwei Punkten im Raum) erzeugt durch eine geladene Kugel zu demonstrieren. Das Experiment zeigt das Konzept der Potentialausgleich Oberflächen, die senkrecht auf die elektrischen Felder sind.

Principles

Eine Punktladung Q befindet sich am Ursprung (R = 0) erzeugt eine elektrische Spannung:

Equation 1(Gleichung 1)

an jedem Punkt im Raum mit einem Abstand R von der Ladung (im Ursprung R = 0). Gleichung 1 beschreibt auch das elektrische Potential produziert durch eine gleichmäßig geladenen Kugel (zentriert auf R = 0) mit Gesamtladung Q in den Raum außerhalb der Sphäre (Abbildung 1). In beiden Fällen ist der “Bezugspunkt” (wobei das Potential Null ist) an den unendlich weit weg von der Ladung. Das elektrische Potenzial variiert entlang radialer Richtung, der die Richtung des elektrischen Feldes ist.

Für zwei Punkte P1 und P2 mit Abstand R1 und R2 vom Ursprung (Mitte der Ladung) bzw. ist die Potentialdifferenz zwischen diesen beiden Punkten:

Equation 2(Gleichung 2)

Punkt P2 im unendlichen (→∞) ist, reduziert diese Gleichung 2 nach Gleichung 1. Daher gibt es eine Potentialdifferenz zwischen zwei Punkten, wenn und nur wenn diese beiden Punkte einen unterschiedlichen Abstand vom Ursprung (Mitte der Ladung haben). Eine sphärische Fläche am Ursprung zentriert ist in diesem Fall eine “Potentialausgleich Oberfläche”. Beachten Sie in diesem Fall das elektrische Feld (entlang der radialen Richtung) senkrecht zur Erdung Oberfläche (Sphäre). Dies erweist sich um in der Regel wahr zu sein: die Erdung Oberfläche ist senkrecht zur Richtung des elektrischen Feldes.

Figure 1

Abbildung 1: Schematische Darstellung einer geladenen Kugel mit einem elektrischen Generator verbunden. Ein Voltmeter wird verwendet, um das elektrische Potential an einem Punkt “A” (mit Abstand R vom Mittelpunkt der Kugel) zu messen.

Procedure

1. elektrisches Potential aufgrund einer geladenen Kugel Erhalten Sie einen van der Graff-Generator, der kostenlos auf eine Metallkugel setzen kann. Der Mittelpunkt der Kugel ist definiert als der Ursprung für dieses Experiment. Erhalten Sie ein Voltmeter. Verbinden Sie (mit Durchführung von Kabeln) “−” terminal auf den Boden oder Referenz terminal am van der Graff Generator, oder eine Erdung (z. B. ein großes leitfähige Rohr) weit weg (mindestens ein paar Meter) vom Generator. Verbinden Sie die Klemme “+” mit einem Voltmeter Kabel mit einer Spannung Sondenspitze, die bewegt werden kann. Die schematische Verbindung ist in Abbildung 1dargestellt. Drehen Sie die Kurbel des Generators um mindestens 10 Umdrehungen, die Kugel zu berechnen. Mit dem Voltmeter eingeschaltet, setzen Sie die Spitze des Prüfpunkts Spannung (verbunden mit dem “+” Terminal das Voltmeter) ca. 0,5 m vom Ursprung. Verwenden Sie ein Lineal, Messen oder den Abstand vorher markieren, falls gewünscht. Notieren Sie die Spannung auf das Voltmeter lesen. Bewegen Sie die Spitze, aber halten Sie den Abstand vom Ursprung. Beobachten Sie das Voltmeter lesen. Wiederholen Sie den obigen Schritt mit der Spannung Sondenspitze bzw. ca. 1 m und 1,5 m platziert. Erhalten Sie ein Fluoreszenz-Rohr (Handheld). Bringen Sie das Rohr auf ca. 0,5 m Weg von der Mitte der geladenen Kugel ( Abb. 2a). Zunächst orientieren Sie das Rohr, so dass es in der radialen Richtung Weg von der Kugel. Beobachten Sie das Rohr (Schalten Sie die Lichter, die Beobachtung in relativer Dunkelheit zu erleichtern). Dann drehen Sie das Rohr um 90 Grad, so dass sie in radialer Richtung ( Abb. 2 b) senkrecht steht. Beobachten Sie das Rohr wieder. Abbildung 2: Schematische Darstellung einer geladenen Kugel mit einem elektrischen Generator verbunden. Eine Fluoreszenz-Röhre wird verwendet, um die Potentialdifferenz zwischen den beiden Enden des Rohres angeben. Im Falle von (a) das Rohr orientiert sich entlang der radialen Richtung; und (b) das Rohr wird orientierten senkrecht zur Radialrichtung.

Results

In steps 1.4-1.5, the voltmeter can be observed to give similar readings if the probe tip is kept at similar distances from the origin (that is, on an equipotential surface). However, the voltage drops if the probe moves farther away from the origin. The voltage reading at 1 m and 1.5 m away will be about 1/2 and 1/3 of the reading at 0.5 m away, respectively. If the voltage V measured versus the inverse distance (1/r) is plotted, a straight line results, as expected from Equation 1.

Applications and Summary

Electric potential (voltage) is ubiquitous and perhaps the most commonly used quantity in electricity. It is often much more convenient to use electric potential (which is a scalar) than electric field (which is a vector), even though the two can be related to each other. Electric potential difference is used to drive and control charge motion (accelerate/decelerate/deflect charges), for example in a TV screen or electron microscope. Electric potential difference (what we usually call voltage) is also what drives current flow in a conductor. Whenever one measures a voltage, one is measuring the electric potential difference between two points (one of which is sometimes a reference point or ground defined to have zero potential).

The author of the experiment acknowledges the assistance of Gary Hudson for material preparation and Chuanhsun Li for demonstrating the steps in the video.

Transcript

Electric potential defines the energy of a charged particle. It gives rise to electric field and electric force, and is the basis of many electrical phenomena.

The term electrical potential is denoted by the Greek symbol Φ. It is a scalar quantity with a sign and magnitude. Any charge creates electric potential in the space around it. It is different from the term Voltage, although both these physical quantities are measured in Volts.

Here, we will first explain what these terms are, discuss the parameters that affect Φ, and then demonstrate the measurement of electric potential around a charged sphere.

As discussed in the Energy and Work video, potential energy of any object of mass m under the influence of gravitational acceleration g is equal to the amount of work needed to move that object by a height h from the ground. Mathematically, it is given by the formula mgh and has the unit of Joules.

Similarly, in the electric field E around a positively charged surface, the electrical potential energy at a specific point relative to a reference point is the amount of work necessary to move a positive test charge +q from the reference to that specific point. The distance between the two points is denoted by the letter d. Analogous to the gravitational potential energy, the electrical potential energy is the product of q, E, and d, and has the units of Joules.

Then, the electric potential or Φ at that point in the field is the electrical potential energy divided by ‘q’, the charge on the test charge. Therefore, the unit for Φ is joules per coulomb, AKA volts.

Now, if we consider another point in the field, it would have a different electric potential; say Φ0. The potential difference or Φdiff between the two points is known as voltage. This is the concept behind a battery, where the positive terminal is at a higher electric potential compared to the negative terminal and the difference between the two potentials is the voltage of the battery.

Coming back to electric potential, recall that it is a scalar quantity with a sign and magnitude. The sign depends on the source charge. Around an isolated positive charge, the potential is positive, whereas around an isolated negative charge it is negative.

The magnitude of the potential depends on the Q of the source charge producing the electric field, the distance d from the source charge, and the configuration.

For example, the electric potential at any given point around a point charge or a uniformly charged positive sphere with charge Q is given by this formula. It is evident that Φ is inversely proportional to the distance from the sphere. And the graph of electric potential magnitude versus distance is approaching zero at infinity.

This dependence on d also indicates that all locations at the same radius from the charged sphere would have the same potential. This means that there are equipotential surfaces of spherical shape around a charged sphere.

Now that we’ve explained the concepts behind electric potential and potential difference, let’s see how to validate these principles experimentally using a charged sphere.

This experiment uses a Van der Graff generator to charge a metal sphere. Connect the negative terminal of a voltmeter to the generator’s reference terminal or ground. Use a cable to connect the positive terminal of the voltmeter to a probe tip.

Turn the crank of the generator at least 10 times to charge the sphere then turn on the voltmeter and place the tip of the voltage probe about one-half meter away from the center of the sphere. Record the voltage reading at this location.

Move the probe tip around the sphere while maintaining a constant radius of one half meter from the center. During this time, observe the voltmeter measurements and note how the reading remains constant, indicating a spherical equipotential surface.

Repeat this procedure with the probe tip at a distance of one meter, and then one and a half meters from the center of the sphere.

The plot of measured potential versus distance displays a curve that decreases inversely with distance, which validates the theoretical relationship between electric potential and distance, for a charged sphere.

Electric potential is one of the most commonly used electrical quantities and is fundamental to the storage and release of electrical energy.

An electron microscope uses a high electric potential difference to accelerate electrons in a beam that bombards the sample under examination. These electrons act like a light in an optical microscope, but with much smaller wavelengths and much greater spatial resolution, enabling the ability to visualize sub-micron sized structures.

Electric potential is an important component of gel electrophoresis – a molecular biology technique commonly used for separating large molecules, such as DNA, by size and charge. In this technique, sample material is placed on a slab of agarose gel and an electric potential difference is applied between the ends. In the resulting electric field, the various molecules and molecular fragments move with speeds that depend on charge and molecular weight.

You’ve just watched JoVE’s introduction to electric potential. You should now know how to measure electric potential, and understand how it affects charges and relates to electric potential energy. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Electric Potential. JoVE, Cambridge, MA, (2023).