JoVE Science Education
Aeronautical Engineering
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Aeronautical Engineering
Schlieren Imaging: A Technique to Visualize Supersonic Flow Features
  • 00:01Concepts
  • 03:01Visualizing the Shock Wave in Supersonic Flow Over a Cone
  • 06:10Results

シュリーレンイメージング:超音速流機能を可視化する技術

English

Share

Overview

出典:ホセ・ロベルト・モレト、ジェイミー・ドラド、サンディエゴ州立大学航空宇宙工学科、サンディエゴ、カリフォルニア州

軍用ジェット戦闘機や発射物は、音速を超える驚異的な速度で飛行することができ、超音速で飛行しています。音速は、音波が媒体を通して伝播する速度で、マッハ数は343m/sで、物体の飛行速度を音速に対して測定するために使用されます。

音速で移動するオブジェクトのマッハ数は 1.0 ですが、音速よりも速く移動するオブジェクトのマッハ数は 1.0 より大きくなります。このような速度で移動する場合、空気の圧縮効果を考慮する必要があります。マッハ数が 0.3 より大きい場合、フローは圧縮可能と見なされます。本実証では、シュリーレン系を用いて圧縮流における衝撃波と圧縮波の形成を可視化することで、コーン上のマッハ2.0超音速流を解析する。

Principles

Procedure

1. シュリーレンイメージングシステムを用いて衝撃波を可視化する 空気を脱水するために乾燥機の塔をアクティブにします。これにより、空気の流れが水分を含まないことが保証され、超音速流によって試験区間の局所温度が低下した場合の氷の形成を防ぐことができます。 テストセクションを開き、15°半角コーンモデルを支持構造に固定します。 テス?…

Results

In this demonstration, a cone with a half angle of 15 degrees was subjected to a supersonic flow at Mach 2.0. In Figure 3, a shock wake and an expansion fan over the cone is observed. Theoretically, an oblique shock should form at the cone surface at an angle of 33.9°. The experimental angle was measured to be 33.6°, as shown by the red line in Figure 3B. Compared to the theoretical data, the percent error was found to be less than 1%. In addition, this flow visualization method was able to show the expansion fan over the trailing edge of the model.

Figure 3
Figure 3: Schlieren image of Mach 2 flow over a 15° half-angle cone. A) Original image. B) Highlighted features displaying a shock wave at the leading edge and expansion fan at the trailing edge.

Applications and Summary

The schlieren imaging technique is a classical optical flow visualization technique based on density changes in the fluid. It is a simple system built with concave mirrors, a knife-edge, and a light source. With this system, supersonic flow features, such as shock waves and expansion waves, can be visualized. This technique, however, has sensitivity limits to low-speed flows.

The schlieren imaging method may be used for a variety of applications, especially in the study of fluid mechanics and visualizing turbulence. Schlieren imaging provides valuable information on the spatial distribution of complicated flow structures in compressible, turbulent flow and in test flights.

This technique has also been used in air-to-air photography of supersonic aircraft, which involves using the sun and/or moon as a light source and the desert floor as the projecting surface to visualize the shock waves. Typically, supercomputers and wind tunnel testing are used to predict the formation, propagation, and merging of shock waves on an aircraft. To enhance the quality of these predictions, a database of sonic boom measurements are collected at various speeds and altitudes. This technique permits supersonic flow visualization of a full-scale aircraft, rather than a scaled-down model.

This technique may also be adapted to scramjets. Scramjets are airbreathing engines that rely on the pure speed of an aircraft to compress air into the engine before combustion. Focusing-schlieren visualization is able to show fuel jets, turbulent structures of mixing, and shock waves inside the scramjet engine.

Name Company Catalog Number Comments
Equipment
Supersonic wind tunnel SDSU Operational Mach numbers (1; 2; 3; 4.5)
Test section 6"x6"x10"
Schlieren System SDSU
Cone model SDSU 15-degree half angle.
Dresser reciprocating air compressor.
Air dryer. Oriad Each tower takes 4 hours to dry.
Large air receiver tank.
6-inches control valve. The valve is pneumatically powered and electrically controlled.
EC-321 process loop controller. Toshiba
Pressure transmitter. Rosemount

Transcript

Military jets fly at incredible speeds that exceed the speed of sound, called supersonic speeds. When describing supersonic speeds, we use Mach number to gauge that speed relative to the speed of sound. At a Mach number greater than 0.8, but less than 1.2, the speed is transonic. Above Mach 1.2, the speed is supersonic.

Let’s take a closer look at what is happening at these high speeds by analyzing air flow around a cone-shaped body. Above a Mach number of 0.3, the compressibility effects of air must be considered, because at these high speeds air has significant density changes. When the incoming flow speed is above Mach 1.0, an oblique shock wave forms from the nose of the cone or wedge, and expansion fans form around the moving body.

A shock wave is an extremely thin propagating disturbance, where abrupt changes in flow properties, like pressure, temperature, and density, occur. An expansion fan consists of an infinite number of waves and is caused when supersonic flow turns around a convex corner. The pressure, density, and temperature decrease continuously across the expansion fan, while the velocity increases. Since the density of air changes significantly within the shock wave and expansion fans, they can be visualized using a density-based flow visualization technique, called Schlieren Imaging.

The Schlieren method relies on refractive index, which is the ratio of light’s velocity in a vacuum, to its velocity within a specific medium. The change in refractive index is proportional to the change in density. Thus, as the density of air changes in the shock wave and expansion fan, so does the refractive index.

In Schlieren Imaging, a collimated light source shines on the body, and the variation in refractive index distorts the light beam. In order to visualize the deflection, a knife-edge is placed at the focal plane of the transmitted light, thus, blocking some of the deflected light, and enhancing the contrast of the projected image on screen. This results in an image of high and low light intensity, which maps the areas of high and low air density, thus enabling us to visualize the shock waves and expansion fans.

In this experiment, we will demonstrate the use of a Schlieren Imaging system to visualize the shock waves and expansion fans formed by Mach 2 air flow over a cone.

This experiment utilizes a Schlieren system to image shock waves generated by a supersonic wind tunnel around a 15° half-angle cone model. The Schlieren system used in this experiment is set up as shown.

First, activate the dryer towers to dehydrate the air. This will prevent ice formation due to local temperature drops in the test section. Then, open the text section, and secure the 15° half-angle cone model to the support structure inside. Check the test section to make sure it is clear of debris and any other objects. Then close the test section.

Make sure the main valve for the air flow control is closed, then turn on the compressor to pressurize the air storage tank, and let the tank reach 210 psi. If the compressor does not automatically shut off when pressure is reached, turn off the compressor manually. Now, turn on the controller for the high-speed valve.

To set up the Schlieren Imaging system, first turn on the light and cooling fan. Then place a piece of paper on the opposite side of the test section from the light source. Align the first concave mirror to allow light to pass through the test section, and check that the light hits the paper. Then, position a projecting screen where the image is formed.

Now, adjust the second concave mirror so that light passing through the test section is reflected onto the projecting screen. Adjust the knife-edge so that it is at the focal point of the second mirror. Then, adjust the knife-edge aperture to achieve the desired image quality.

To record the projected image, set a camera on a tripod that faces the screen. To record directly on the camera sensor, position the camera in front of the knife edge aperture. Now that the apparatus is set up, let’s run the experiment.

First, put on the appropriate hearing protection, then make sure that no one is near the air exhaust outside of the building. Start by opening the air supply to the fast valve controller. Then, open the main valve, which lets air into the system. Now, turn off the lights in the room so that the projected image is easier to see. Then, activate the wind tunnel by pushing the green button located next to the controller, which opens the fast valve.

Observe the Schlieren Image of the Mach 2.0 flow over the cone model. When finished, turn off the wind tunnel by closing the valves in reverse order, and then turning off the controller. Wait until the apparatus is done releasing air before removing your hearing protection.

Now, let’s take a look at the image acquired using the Schlieren setup. The model used in this experiment was a cone with a half angle of 15°, and it was subjected to supersonic flow at Mach 2.0. We can observe the presence of a shockwave, as shown here.

Theoretically, an oblique shock should form at the cone surface, at an angle of 33.9°. The oblique shock angle value is obtained from the Taylor-Maccoll Equation, which must be solved numerically. The experimental angle measured was 33.6°, a percent error of less than 1%, as compared to the theoretical data.

In addition, the Schlieren technique enables the visualization of expansion fans over the cone. The expansion fan is an expected expansion process that occurs when supersonic flow turns around a convex angle.

In summary, we learned how the Schlieren Method uses changes in refractive index to visualize shock waves and expansion fans in supersonic flow. We then utilized the imaging technique to visualize the shock and expansion wave patterns in the Mach 2.0 flow field over a cone.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Schlieren Imaging: A Technique to Visualize Supersonic Flow Features. JoVE, Cambridge, MA, (2023).