免疫荧光显微镜:石蜡内嵌组织部分的免疫荧光染色

A subscription to JoVE is required to view this content.  Sign in or start your free trial.
Immunofluorescence Microscopy: Immunofluorescence Staining of Paraffin-Embedded Tissue Sections

53,514 Views

09:56 min
April 30, 2023

Overview

资料来源:托马斯·查菲1,托马斯·格里菲斯2,3,4,凯瑟琳·施韦特费格1,3,4
1明尼苏达大学明尼阿波利斯分校实验室医学和病理学系,MN 55455
2明尼苏达大学泌尿科,明尼阿波利斯,MN 55455
3共济会癌症中心,明尼苏达大学明尼阿波利斯分校,MN 55455
4明尼苏达大学明尼阿波利斯分校免疫学中心,MN 55455

组织部分的病理分析可用于更好地了解正常组织结构,并有助于我们了解疾病机制。组织活检,无论是从患者还是从实验性体内模型,通常通过固定在甲醛或甲醛和嵌入石蜡中来保存。这允许长期存储和组织被分割。使用微缩图,将组织切成薄(5 μm)部分,并且这些截面粘附在玻璃玻片上。组织部分可以沾染抗体,从而检测组织部分的特定蛋白质。与荧光素(也称为氟铬)结合的抗体染色 – 当激光激发时以特定波长发出光的化合物 – 称为免疫荧光。检测部分内蛋白质的能力可以提供信息,如细胞类型异质性在组织内,激活特定信号通路,和生物标志物的表达。根据所使用的荧光光和可用于分析的显微镜类型,可以使用多种颜色,从而可以多路分析目标。

以下协议概述了石蜡嵌入式组织部分的免疫荧光染色所涉及的基本步骤。需要注意的是,该协议将不包括关于组织固定、石蜡嵌入过程或组织切片的任何细节。一旦组织被分割并放置在玻璃幻灯片上,它们就会通过一系列分级乙醇(EtOH)孵育物进行补水。这些部分用阻塞试剂孵育,以减少抗体与组织部分的非特异性结合。然后,用可能或可能不会直接标记荧光剂的原抗体孵育这些部分。如果原抗体没有直接标记,则用标有荧光剂的次级抗体孵育这些部分。不同的抗体可能需要不同的染色条件,因此包括优化抗体的建议。洗涤后去除所有未结合的抗体后,将幻灯片与含有DAPI的介质安装,以荧光标记细胞核。安装介质干燥后,可以使用显微镜使用激光对幻灯片进行成像,激光可以检测不同的荧光道。

Procedure

1. 设置

  1. 典型的染色协议涉及以下步骤:
    1. 使用一系列分级乙醇对幻灯片上的组织部分进行重新保湿。
    2. 用阻塞缓冲液孵育组织部分,这将有助于阻断抗体与组织的非特异性结合,并减少背景荧光。
    3. 去除阻塞缓冲液,在原抗体中孵育该部分,此时抗体将结合其肽靶点。
    4. 去除原抗体,在洗涤缓冲液中广泛清洗各部分。
    5. 如果原抗体没有直接标记有荧光团,并且需要二级抗体,则用二级抗体孵育部分,以便与原抗体结合。
    6. 将次级抗体从滑轨上洗掉。
    7. 在安装介质中安装幻灯片,使其在荧光显微镜可视化之前干燥。
  2. 需要以下物品:滑动支架(玻璃或塑料)、罐、移液器、纸笔、潮湿室、盖玻片以及带 DAPI 的安装介质。
  3. 二甲苯用于幻灯片的补液。二甲苯是危险的,应与适当的PPE一起使用,包括手套和实验室外套。
  4. 缓冲剂、溶液和试剂的配方
    1. 分级乙醇
      乙醇 – 160 mL 200 防艾图和 40mL ddH2O
      乙醇 – 140 mL 200 防艾图和 60mL ddH2O
    2. 抗原检索解决方案
      10 mM 柠酸钠,pH 6.0
    3. 阻塞缓冲区
      来自宿主动物的100μL血清,从中产生二级抗体
      900 μL 1X PBS
      注意:这是 10 个部分的卷;根据需要调整每个截面约 100 μL 缓冲液的音量。
    4. 洗涤缓冲液 (1X PBS)

2. 议定书

  1. 用二甲苯和乙醇补液
    1. 将幻灯片放入滑架中,然后将幻灯片浸入 100% 二甲苯等构体溶液中,确保幻灯片完全覆盖解决方案。
    2. 在100%二甲苯等体中孵育幻灯片3分钟,重复两次,共孵育3次。在转移到新解决方案之前,请务必用纸巾擦拭滑架,以尽量减少污染。
      注意:建议在三个单独的容器中进行这些孵育。
    3. 在 100% EtOH 中孵育幻灯片 2 分钟,重复两次,共孵育 3 次。
      注意:建议在三个单独的容器中进行这些孵育。
    4. 在 95% EtOH 中孵育幻灯片 2 分钟。
    5. 在 80% EtOH 中孵育幻灯片 2 分钟。
    6. 在 70% EtOH 中孵育幻灯片 2 分钟。
    7. 在 1X PBS 中孵育幻灯片 5 分钟。
  2. (可选)抗原检索,以揭开由原抗体识别的表位
    注1:此过程高度依赖于所使用的抗体,建议执行初始优化程序以确定抗原检索的要求。
    注2:此过程未在下面显示的 F4/80 染色下执行。抗原检索的要求应结合每个新的抗体进行优化。
    1. 将滑轨放在耐热塑料或玻璃滑片支架中,并确保机架充满滑轨,以确保均匀地分配热量。如果机架中的样本少于插槽,可以使用空白幻灯片。
    2. 将机架放入 1000 mL 的抗原解合溶液中,放入 2L 烧杯 – 10 mL 抗原解掩蔽液,至 990mL 水中。
    3. 微波炉高20分钟,确保幻灯片仍然覆盖水。
    4. 在烧杯中冷却幻灯片 20 分钟。
    5. 在包含 ddH2O 的滑轨支架中清洗滑动机架,每次 5 分钟。每次使用新鲜的ddH2O对总共3次单独的孵育重复两次。每次清洗时,滑块可以在同一滑架上清洗。
    6. 在 1X PBS 中孵育幻灯片 5 分钟。
  3. 用纸笔圈截面。这将允许使用覆盖组织部分所需的最小缓冲液。不要让组织部分干燥。
  4. 向每个部分添加阻塞缓冲区。覆盖截面所需的缓冲量会因截面的大小而异,但范围可能为25-500 μL。
    注意:阻塞缓冲液的选择可能因所使用的抗体而异。例如,来自引发二级抗体的宿主动物的10%血清可用于减少二次抗体的非特异性结合(例如,如果在山羊中升起二级抗体,可以使用正常的山羊血清)。应针对每种主要抗体优化阻塞缓冲液。使用F4/80染色乳腺肿瘤部分,0.1ml10%正常山羊血清在PBS中使用。
  5. 在室温下在加湿室中孵育块缓冲液1小时,或4°C至24小时。加湿室确保各部分不干燥。
  6. 将阻塞缓冲区从幻灯片上排出,将其清除。或者,可以使用移液器移除阻塞缓冲器,但注意不要用移液器尖端触摸该部分。
  7. 稀释阻塞缓冲液中的原抗体。
    注意:需要为每个抗体和样品类型确定正确的稀释。优化将包括执行一系列稀释,以确定最佳染色。为了用F4/80染色乳腺肿瘤部分,组织部分在4°C下孵育过夜,在0.1 mL大鼠抗F4/80抗体中稀释1:100在PBS中1%的正常山羊血清中。
  8. 将原抗体添加到每个部分,并在4°C的加湿室中孵育长达16小时(过夜)。在无原抗体的阻断缓冲液中至少留出一个部分作为对照,这将有助于识别二级抗体的非特异性结合。
  9. 将滑片放入滑架并放入带 1x PBS 的滑块支架中,将原抗体排空或阻塞该部分,用 PBS 清洗部分。每次洗3次10分钟。
  10. 稀释二级抗体1:200在阻断缓冲液。稀释可以根据二级抗体进行优化。
  11. 将次级抗体添加到所有部分(包括对照部分),并在防光室中孵育1小时。
  12. 将二级抗体排干,并在PBS中每次洗涤3次,每次10分钟。
  13. 在幻灯片中添加 2-3 滴含有 DAPI 的安装介质,并在样品上放置一个盖玻片。如果安装介质不是快速干燥类型的介质,则可能需要使用熔化的石蜡或指甲油密封滑道边缘,以防止泄漏并长期维护样品。
  14. 让幻灯片在黑暗中过夜干燥,并使用荧光显微镜对部分进行成像。

3. 数据分析和结果

  1. 使用荧光显微镜分析染色部分。图像捕获和分析的具体细节将取决于显微镜的规格和用于执行分析的软件。通常,图像可以作为单色图像拍摄并重叠以生成多色图像。正细胞百分比可以通过计算正染色细胞的数量并除以一节中DAPI染色细胞的总数来量化。对于乳腺肿瘤部分的F4/80染色,使用软件Leica应用套件,版本3.8,在获取选项卡和图像叠加采集模式下,都启用了DAPI和RFP。对暴露、增益和伽玛进行了调整(DAPI 分别为 20.0 ms、1.0x 和 1.53,RFP 分别为 944.2 ms、1.0x 和 1.08),但实验因实验而异。”获取叠加”按钮用于创建 DAPI 和 RFP 曝光的叠加图像。
  2. 下图(图1)显示了一个沾有F4/80的肿瘤部分的免疫荧光图像,该图像检测巨噬细胞和其他骨髓细胞上的抗原。该部分使用包含 DAPI 的安装介质安装,原子核以蓝色显示。

细胞中蛋白质的功能很大程度上取决于它在细胞内的正确定位。免疫荧光显微镜是一种利用荧光染料在细胞内可视化蛋白质的方法。荧光染料是一种荧光剂,它是一种分子,通过称为激发的过程吸收特定波长的光能,然后以不同波长(称为发射)立即释放能量。

荧光染料与靶性特异性抗体结合,并通过免疫染色引入培养细胞或组织。当这种初级抗体与感兴趣的蛋白质结合时,该蛋白质会用荧光染料进行标记。或者,荧光染料可以与二级抗体(而不是原抗体)结合,二次抗体与蛋白质原抗体复合物结合以标记靶标。之后,样品被密封在抗褪色安装介质中,以保持荧光标记,然后准备在荧光显微镜上成像。

荧光显微镜配有强大的光源。光束首先通过激励滤波器,该滤光片只允许激发波长的光通过。然后,激发光到达一个称为二色镜或光束分割器的专用反射镜,该反射器旨在选择性地将激发波长反射至物镜。然后,镜头将光线聚焦到样品中的一个小区域。到达样品后,光会激发荧光道,然后以不同的波长发射光能。此光通过物镜传回二色镜。由于发射波长与激发波长不同,二色镜允许发射光通过。然后,它通过第二个滤波器,称为发射滤波器,它消除了来自可能存在的任何其他波长的光。之后,光线现在到达目镜或照相机,在那里它们呈现从特定荧光道发出的光创建的放大图像。此图像表示感兴趣的蛋白质在细胞内的位置。

DNA结合荧光染料通常与免疫染色一起使用,将细胞内的细胞核作为参考点。多个不同荧光道,具有不同的激发发射波长,可用于同一样品中的不同蛋白质,以比较蛋白质的定位。

本视频演示了在组织样品中对感兴趣的蛋白质进行免疫荧光染色的过程,随后在荧光显微镜上成像样品。

在开始染色过程之前,在嵌入过程中脱水的截面需要重新脱水。为此,首先,将幻灯片放入滑架,然后将幻灯片完全浸入 100% Xlene 等构体中。让幻灯片孵育三分钟。然后,从容器中取出滑片,用纸巾擦去多余的二甲苯,并将其放入新的二甲苯浴缸中,再放置三分钟。每次在新的容器中重复这种孵育,用新鲜的二甲苯,用纸巾擦拭幻灯片,然后再转移到新容器,共孵育三个。接下来,在一系列分级乙醇溶液中孵育各部分,从100%乙醇开始两分钟。用纸巾擦拭滑架,并将幻灯片转移到 100% 乙醇的新容器中再再两分钟。继续洗涤循环,用纸巾擦拭多余的乙醇,并在指定时间内按照指示的乙醇浓度将滑片转移到新浴缸。最后一次乙醇清洗后,摆脱多余的溶液,在1X PBS中孵育幻灯片5分钟。

要开始染色过程,首先,使用 PAP 笔圈出各部分,以确定缓冲区需要覆盖的最小区域。一旦在幻灯片上清楚地标记了截面,向每张幻灯片添加 100 微升的阻塞缓冲液,确保覆盖整个截面表面。在组织覆盖在阻塞缓冲液中后,将幻灯片放在加湿室中。让幻灯片在室温下孵育一小时。

在所需的孵育时间之后,将其从幻灯片上排出,从而清除阻塞缓冲液。接下来,稀释阻塞缓冲液中的原抗体。对于1:100稀释,将990微升的阻塞缓冲液加入1.5毫升的离心管中,然后将10微升的原抗体添加到同一管中。将一张幻灯片标记为控件,然后添加 100 微升的阻塞缓冲液。此对照将有助于识别二次抗体的任何非特异性结合。现在,在剩余的幻灯片中加入100微升的原抗体缓冲液。在黑暗中,在四摄氏度的加湿室中孵育部分过夜。

在过夜孵育后,从腔室中取出部分,并将主要抗体从每个滑轨和阻塞缓冲液中排出。将幻灯片放入滑架,然后在 1X PBS 中清洗三次,每次 10 分钟。当幻灯片在1X PBS中洗涤时,稀释阻塞缓冲液中的二次抗体。对于1:200稀释,将995微升的阻塞缓冲液加入1.5毫升的管子中,然后将5微升的二级抗体加入同一管。将二级抗体添加到所有部分(包括对照部分),并在防光室中孵育一小时。当计时器响起时,从培养箱中删除幻灯片。将二级抗体从各部分排出。取出辅助抗体后,将幻灯片放入滑轨架中,然后将幻灯片完全浸入 1X PBS 中 10 分钟,防止光线照射。重复此洗涤三次,每次洗涤使用新鲜的 1X PBS。进行下垂后,在每个幻灯片中加入两到三滴含有 DAPI 的安装介质,并在样品上放置一个玻璃盖玻片。在使用荧光示波器成像部分之前,让幻灯片在黑暗的地方过夜干燥。

在成像过程中,图像捕获的详细信息将取决于可用的特定显微镜和软件。但是,在此特定示例中,软件 Leica 应用程序套件,版本 3。8,用于执行分析。使用此程序,单击”获取”选项卡和图像叠加采集模式,同时启用 DAPI 和 RFP。接下来,调整 DAPI 和 RFP 的曝光、增益和伽玛,使用软件定义的默认设置进行初始操作,然后通过修改曝光时间和增益来优化亮度,同时牢记最小最佳设置是避免样品的图像饱和和光漂白。可以修改 Gamma 以优化图像的较暗区域。

调整设置后,按”获取叠加”按钮创建 DAPI 和 RFP 曝光的叠加图像。此示例图像,使用演示的技术捕获,显示了小鼠乳腺肿瘤部分,染色的抗体F4/80,检测抗原,在巨噬细胞和其他骨髓细胞上,以红色表示。由于使用了含DAPI的安装介质,核以蓝色显示。成像数据将提供有关组织部分蛋白质的强度和定位的信息。

例如,在沾有F4/80的肿瘤图像中,观察到这种抗原的细胞表面染色。这些数据还可以提供有关组织部分内特定细胞群的频率的信息。这可以通过计算正染色细胞的数量(此处以红色显示)并将其与总细胞群(以蓝色显示)进行比较,并使用以下方程计算频率来量化。

Results

Figure 1
图1:乳腺肿瘤部分的F4/80染色。固定后,小鼠乳腺肿瘤被分割,并沾染抗F4/80,并使用含有DAPI的安装介质安装。染色由细胞表面F4/80红色染色显示。请点击此处查看此图的较大版本。

从成像中获得的数据将提供有关组织部分中感兴趣的蛋白质表达的强度和定位的信息。根据所检查的蛋白质,这些数据还可以提供有关组织部分特定细胞群的频率的信息。这可以通过计算正染色细胞的数量并与总细胞群进行比较来量化。

Applications and Summary

免疫荧光允许在组织部分范围内研究蛋白质表达和定位。该技术可用于通过检查正常组织和病变组织中的蛋白质定位或细胞数来了解组织在疾病背景下的变化。可以确定本地化或表达式模式中的更改并链接到示例的特定属性。

References

  1. Im K, Mareninov S., Diaz MFP, Yong WH. An Introduction to Performing Immunofluorescence Staining. Yong W. (eds) Biobanking. Methods in Molecular Biology. 1897, Humana Press, New York, NY (2019)
  2. Ramos-Vara JA. Principles and Methods of Immunohistochemistry. Gautier JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology. 1641, Humana Press, New York, NY (2017)
  3. Donaldson JG. Immunofluorescence Staining. Current protocols in Cell Biology. 69 (1):1 4.3.1-4.3.7. (2015)

Transcript

The function of a protein in a cell is largely dependent on its proper localization within the cell. Immunofluorescence microscopy is a method by which a protein can be visualized inside cells using fluorescent dyes. A fluorescent dye is a fluorophore, that is a molecule that absorbs light energy at a specific wavelength by a process called excitation, and then immediately releases the energy at a different wavelength, known as emission.

Fluorescent dyes are conjugated to a target-specific antibody and introduced into cultured cells or tissue by immunostaining. When this primary antibody binds to the protein of interest, the protein gets labeled with the fluorescent dye. Alternatively, the fluorescent dye can be conjugated to a secondary antibody, instead of the primary antibody, and the secondary antibody binds to the protein primary antibody complex to label the target. After that, the sample is sealed in an antifade mounting medium to preserve the fluorescence labeling and is then ready for imaging on a fluorescence microscope.

A fluorescence microscope is equipped with a powerful light source. The light beam first passes through an excitation filter, which allows only the light at the excitation wavelength to pass through. The excitation light then reaches a specialized mirror, called a dichroic mirror or a beam splitter, which is designed to selectively reflect the excitation wavelength towards an objective lens. The lens then focuses the light onto a small region in the sample. Upon reaching the sample, the light excites the fluorophores, which then emit the light energy at a different wavelength. This light is transmitted back through the objective lens to the dichroic mirror. Since the emission wavelength is different from the excitation wavelength, the dichroic mirror allows the emission light to pass through. Then, it goes through a second filter, called the emission filter, which eliminates light from any other wavelengths that may be present. After that, the light rays now reach the eyepiece or camera, where they present a magnified image created from the emitted light from the specific fluorophores. This image represents the location of the protein of interest within the cell.

DNA binding fluorescent dyes are often used along with immunostaining to label nuclei as a point of reference within the cells. Multiple different fluorophores, with different excitation emission wavelengths, can be used for different proteins within the same sample to compare localization of the proteins.

This video demonstrates the procedure for immunofluorescent staining of a protein of interest in a tissue sample followed by imaging the sample on a fluorescence microscope.

Before beginning the staining process, the sections, which were dehydrated during the embedding process, need to be rehydrated. To do this, first, place the slides into a slide holder and then completely submerge the slides in 100% Xlene isomers. Allow the slides to incubate for three minutes. Then, remove the slides from the container, wipe off any excess Xylene with a paper towel, and place them into a new Xylene bath in a fresh container, for a further three minutes. Repeat this incubation each time in a new container with fresh Xylene and wiping down the slides with paper towels before transferring to the new container, for a total of three incubations. Next, incubate the sections in a series of graded ethanol solutions, starting with 100% ethanol for two minutes. Wipe off the slide rack with a paper towel, and transfer the slides to a new container of 100% ethanol for another two minutes. Continue the cycle of washing, wiping excess ethanol with a paper towel, and transferring the slides to a new bath, following the indicated concentrations of ethanol for the specified time. After the final ethanol wash, shake off the excess solution and incubate the slides in 1X PBS for five minutes.

To begin the staining process, first, circle the sections with a PAP pen to identify the minimal area that the buffers need to cover. Once the sections are clearly marked on the slide, add 100 microliters of blocking buffer to each slide, making sure to cover the entire section surface. After the tissues are covered in blocking buffer, place the slides in a humidified chamber. Leave the slides to incubate for one hour at room temperature.

Following the desired incubation time, remove the blocking buffer by draining it off the slide. Next, dilute the primary antibody in blocking buffer. For a 1:100 dilution, add 990 microliters of blocking buffer to a 1.5 milliliter centrifuge tube, followed by 10 microliters of the primary antibody to the same tube. Label one slide as a control and then add 100 microliters of blocking buffer. This control will help identify any non-specific binding of the secondary antibody. Now, add 100 microliters of primary antibody buffer to the remaining slides. Incubate the sections overnight in a humidified chamber at four degrees celsius, in the dark.

Following the overnight incubation, remove the sections from the chamber and drain the primary antibody off each slide and the blocking buffer from the control. Place the slides into a slide rack and then wash them three times in 1X PBS for ten minutes each. While the slides are washing in 1X PBS, dilute the secondary antibody in blocking buffer. For a 1:200 dilution, add 995 microliters of blocking buffer to a 1.5 milliliter tube, followed by five microliters of the secondary antibody to the same tube. Add the secondary antibody to all of the sections, including the control, and incubate them for one hour in a humidified chamber protected from light. When the timer sounds, remove the slides from the incubator. Drain the secondary antibody off the sections. Once the secondary antibody is removed, place the slides in a slide rack and then completely submerge the slides in 1X PBS for 10 minutes, protected from light. Repeat this wash three times, using fresh 1X PBS for each wash. Following the washes, add two to three drops of mounting media containing DAPI to each slide and place a glass coverslip on the samples. Allow the slides to dry overnight in a dark place before imaging the sections using a fluorescent scope.

During imaging, the details of image capture will depend upon the specific microscope and software available. However, in this particular example, the software Leica Application Suite, Version 3. 8, is used to perform the analysis. Using this program, click on the Acquire tab and in Image Overlay Acquisition mode, enable both DAPI and RFP. Next, adjust the Exposure, Gain, and Gamma for both DAPI and RFP, by taking an initial using the default settings defined by the software, and then optimizing for brightness by modifying the exposure time and the gain, keeping in mind that minimal optimal settings are desirable to avoid image saturation and photobleaching of the samples. Gamma can be modified to optimize darker areas of an image.

Once the settings are adjusted, press the Acquire Overlay button to create overlay images of the DAPI and RFP exposures. This example image, captured using the demonstrated technique, shows a mouse mammary tumor section, stained with the antibody F4/80, which detects an antigen, depicted in red, on macrophages and other myeloid cells. Since DAPI-containing mounting media was used, nuclei are shown in blue. The data from the imaging will provide information regarding the intensity and localization of the protein within the tissue section.

For example, in the image of the tumor stained with F4/80, cell surface staining of this antigen is observed. These data can also provide information regarding the frequency of specific cell populations within the tissue section. This can be quantified by counting the number of positively stained cells, here shown in red, and comparing that with the total cell population, shown in blue, and calculating the frequency using the following equation.

Tags