鸡(家鸡)的介绍

JoVE 科学教育
Biology II: Mouse, Zebrafish, and Chick
需要订阅 JoVE 才能查看此.  登录或开始免费试用。
JoVE 科学教育 Biology II: Mouse, Zebrafish, and Chick
An Introduction to the Chick: Gallus gallus domesticus

61,281 Views

07:26 min
April 30, 2023

概述

鸡(家鸡)的胚胎是一个极有价值的研究发育生物学的模式生物,部分原因是因为它们的大部分发育阶段发生在鸡蛋内,并在母体以外孵育的。因此,早期的发育阶段可以通过在蛋壳上简单地开个小孔而接近,观察和操控。由于有数十亿鸡在世界范围内繁育用于提供肉和蛋,科学家们全年都可很容易并低价获得大量的受精蛋。此外,鸡与人类有着显著的遗传保守性,因此通过鸡发现的调节发育的遗传机制也适用于我们自己的生物学。

本视频重点介绍了作为科学模式生物的家养鸡。从对鸡的系统发生的回顾开始,揭示了它们像其他鸟类,爬行动物和哺乳动物定义为羊膜动物的特征。呈现了鸡研究千年的亮点,从亚里士多德的关于胚外膜功能的推测到更近一些的获得诺贝尔奖的神经科学的发现。此外,我们还提供了一些目前在鸡胚上进行研究的例子,如发育过程中体内跟踪细胞运动和征用血管发展肿瘤(称为血管生成的过程)。

Procedure

发育中的鸡或小鸡,学名家鸡,是生物医学研究的重要模式系统。每个鸡蛋都含有一个可被遗传学和胚胎学操作的胚胎。由于人类和鸡基因组之间的相似性,这些实验会与人类的健康和疾病相关。本短片概述了鸡的模式系统,用鸡做研究的一些重大发现,和如何将它们应用在今天的实验室中的一些令人兴奋的例子。

在谈鸡的科学价值之前,让我们先回顾鸡的一些基本生物学知识。和爬行动物和哺乳动物一样,家鸡属于脊椎动物的羊膜类进化枝,其特点是含有支持胚胎发育的胚外膜。蛋内有膜系统的进化使得祖先羊膜动物几百万年前能栖息在陆地环境,这几乎证明了进化中是先有蛋!

在鸟纲中,鸡属于雉科陆地鸟类,它的大部分时间生活在陆地上。我们所知道的作为一个美味的食物来源的鸟儿其实是鸡的一个亚种,俗称红原鸡,它栖息于东南亚。今天,世界各地饲养了数十亿只鸡以提供肉类和禽蛋。

显然,这些鸟是人类饮食的重要组成部分,但它们喜欢吃什么呢?鸡是杂食动物,它们找寻地面的虫子,种子和植物来吃。雌鸡,或母鸡,尤其需要一顿美餐,因为它们要消耗大量的能量来下蛋,几乎每天一个。如果附近有雄鸡,您就会知道;公鸡都更大,更鲜艳,叫得更响亮!

当公鸡和母鸡在一起交配,生命周期就从体内受精开始了。25小时后一个鸡蛋被生出来,里面包含一个多细胞的胚胎。经过21天的孵化,一只小鸡就孵出了。大多数鸡生长31周达到性成熟,这就完成了一个生命周期。

现在,让我们来看看为什么这个常见的农场动物这么受科学研究的欢迎。首先,我们很容易在任何时候低价获得受精的鸡蛋。其次,发育学实验可以精确地通过调节培养温度定时。

第三,由于胚胎是体外发育,科学家们只需要在蛋壳上开个窗口就可以接触到大多数的发育阶段。胚胎也能很好地耐受实验操作,因为蛋清或白蛋白,是天然抗菌的。

最后,但肯定也尤为重要的是,鸡和人类的基因组高度保守。尽管实际上鸡的基因组是人的三分之一大小,它包含了相同数目的基因。在这些基因中有60%对应于人的基因,并且和人的对应基因有平均75%的一致性。

我们已经讨论了什么让小鸡成为了一个极好的模式系统,现在,让我们来回顾一下在这个系统上做出的一些关键的发现。小鸡的研究可以追溯到古希腊时期,当时亚里士多德推测,他在发育中的鸡蛋中观察到的胚外膜,以及人类的胎盘和脐带,都是给胎儿提供重要的营养物质。多年后,1672年Marcello Malpighi第一次在发育中的鸡胚上描述了基本的脊椎动物结构,例如形成神经系统的神经管,和体节,它将生成多种组织如骨骼肌。

1817年,Heinz Christian Pander 研究早期鸡胚,发现被称为胚层的三个原始细胞层。来自这些胚层-外胚层,中胚层和内胚层的细胞,进而形成组成生物体的所有组织。由于这项工作,Pander 获得了胚胎学创始人的称号。

1951年,Viktor Hamburger 和 Howard L. Hamilton 发表了根据解剖结构将胚胎从新下的蛋到孵化的这个过程划分为46个阶段的分期法。Hamburger Hamilton 分期系列法为研究鸡的生物学家们提供了一种标准化他们研究的胚胎的分期方法,减少了由于不同的孵化温度引入的变量因素。

此外,在20世纪50年代,Rita Levi-Montalcini 发现一种神秘因子,使得小鸡神经元在接触植入的小鼠肿瘤后得到生长。 Stanley Cohen 帮助鉴定该未知化合物为神经生长因子NGF。由于这项工作,他们获得了1986年的诺贝尔奖。

我们已经讨论了用鸡进行研究得到了重要的发现,现在,让我们来看看如何在今天的实验室里使用小鸡。

首先,鸡胚常被用于跟踪早期细胞的移动。为了能够将细胞与它们周围细胞区分开,科学家们从其它禽类,比如鹌鹑中移植细胞到鸡胚上。使用鹌鹑特异性标记物,就可以连续多天追踪这些细胞如何整合到发育的结构中。

小鸡对于研究神经元图式形成也极为有用。从胚胎获取的神经组织可以用于研究轴突追踪,神经环路甚至神经细胞的活动。

最后,绒毛尿囊膜,又被称为CAM,是经常用于癌症研究的一个高度血管化的膜。鸡胚胎是自然免疫缺陷的,这使得移植的人类癌细胞能利用CAM的血管形成肿瘤。癌细胞的扩散或转移,可以方便地用这种非常有用的分析方法来进行研究。

您刚观看的是JoVE对鸡的介绍. 本短片简单介绍了这些鸟类,讲述了使它们的胚胎成为功能强大的模式生物的特点,用小鸡得到的重大科学发现,并大致展望了它们在生物学研究中的使用方法。感谢观看!

成績單

The developing chicken, or chick, formally known as Gallus gallus domesticus, is an important model system for biomedical research. Within each chicken egg is an embryo that can be subjected to genetic and embryological manipulations. Such experimentation is relevant to human health and disease, because of the similarities between human and chick genomes. This video covers an overview of the chick model system, some key discoveries made in chick, and a few exciting examples of how they are used in labs today.

Before talking about the chick’s scientific value, let’s review some basic chicken biology. Like reptiles and mammals, Gallus gallus belong to the vertebrate clade Amniota, defined by the presence of extraembryonic membranes that support embryo development. The evolution of this system of membranes within the egg allowed the ancestral amniote to inhabit a land environment millions of years ago, which pretty much proves that it was the egg that came first!

Within the class Aves, chickens belong to the Phasianidae family of terrestrial birds, which spend most of their life on land. The birds we know as a tasty food source are in fact a subspecies of Gallus gallus, commonly known as the Red Junglefowl, which inhabits southeast Asia. Today, billions of chickens are raised for meat and egg production all over the world.

Clearly these birds are a big part of the human diet, but what do they like to eat? Chickens are omnivores that scour the ground for bugs, seeds, and vegetation. Female chickens, or hens, are especially in need of a good meal since they put a lot of energy into making eggs, which are laid almost every day. If a male is around, you’ll know it; roosters are bigger, more colorful, and a lot louder!

When roosters and hens get together to mate, the life cycle begins with internal fertilization. An egg is laid 25 hours later, containing a multicellular embryo. After 21 days of incubation, a chick hatches. Sexual maturity occurs by 31 weeks in most chickens, completing the cycle.

Now, let’s see why this common farm animal is popular in scientific research. First, it is easy to obtain fertilized chicken eggs at a relatively low cost, year-round. Second, developmental experiments can be precisely timed by regulating incubation temperature.

Third, since the embryo develops externally, scientists only need to cut a window in the shell to access most developmental stages. The embryos also tolerate experimental manipulations quite well, because the egg white, or albumin, is naturally antibacterial.

Last, but certainly not least, the chicken and human genomes are highly conserved. Despite the fact that the chicken genome is about a third of the size of the human’s, it packs a similar number of genes. Of these, 60% correspond to a human gene, and are on average 75% identical to their human counterpart.

Now that we’ve discussed what makes chicks a great model, let’s review some key discoveries made in this system. Chick research dates back to ancient Greece, when Aristotle postulated that the extraembryonic membranes he observed in developing chicken eggs, and the human placenta and umbilical cord, both provide crucial nutrition to the embryo. Many years later, in 1672, Marcello Malpighi first described fundamental vertebrate structures in the developing chicken embryo, such as the neural tube, which forms the nervous system; and the somites, which will give rise to multiple tissues, like skeletal muscle.

In 1817, Heinz Christian Pander studied early stage chicken embryos and discovered three primordial layers of cells known as the germ layers. Cells from these layers: the ectoderm, mesoderm, and endoderm, go on to form all of the tissues that make up an organism. For this work, Pander earned the title: The Founder of Embryology.

In 1951, Viktor Hamburger and Howard L. Hamilton published a 46 part staging series to identify embryos based on anatomy, from freshly laid eggs to hatching. The Hamburger and Hamilton staging series provides chick biologists with a way to standardize the staging of the embryos they study, cutting down on variables introduced by differing incubation temperatures.

Also in the 1950s, Rita Levi-Montalcini discovered a mysterious factor that caused chick neurons to grow when exposed to engrafted mouse tumors. Stanley Cohen helped identify this unknown compound as NGF, or nerve growth factor. For this work, they won the Nobel Prize in 1986.

Now that we’ve discussed how chick research has led to important discoveries, let’s take a look at how chicks are used in labs today.

First, chicken embryos are frequently used to track early cell movements. To be able to distinguish cells from their neighbors, scientists transplant cells from other avian species, like the quail, into chick embryos. Using quail-specific markers, the cells are followed over days as they are incorporated into developing structures.

Chicks are also extremely useful for studying neuronal patterning. Neural tissue harvested from an embryo can be used to examine axonal tracing, circuitry and even neuronal activity.

Lastly, the chorioallantoic membrane, otherwise known as the CAM, is a highly vascularized membrane that is frequently used for cancer research. Chicken embryos are naturally immunodeficient, which allows transplanted human cancer cells to readily commandeer blood vessels within the CAM to establish tumors. The spread of cancerous cells, or metastasis, can be easily studied in this highly useful assay.

You’ve just watched JoVE’s introduction to Gallus gallus. This video has provided a brief overview of these birds, features that make their embryos great model organisms, important scientific discoveries made in chick, and a glimpse into the ways they are used in biological research. Thanks for watching!