资料来源: 实验室的博士尼古拉斯 · 德比 — — 康涅狄格大学
精馏也许是纯化有机液体的化学家所使用的最常见的实验室技术。不同沸点混合物分离成单个组件时仔细蒸馏水混合。精馏过程的两个主要类型是”简单”、”分馏蒸馏”,和两个广泛应用于有机合成化学实验室。
简单蒸馏使用时的液体是 (a) 相对纯 (含不超过 10%的液体污染物)、 (b) 具有非易失性组件,如固体的污染物,或 (c) 混合与另一种液体的沸点相差至少 25 ° c。分馏法使用时分离混合物的液体的沸点的相似之处 (隔开少于 25 ° C)。
这个视频将详细介绍的两种常见的有机溶剂,环己烷和甲苯混合物分馏。
用简单蒸馏分离两个或更多的液体,他们是第一次在加热烧瓶。更易挥发的液体 (低沸点液体) 通常会首先,蒸发和蒸气将传递到冷凝的列中,在那里它可以还原成液体 (浓缩) 在凉快玻璃墙,然后滴入收集容器 (图 1)。
图 1。简单的蒸馏装置。
在分馏中液体的混合物煮沸和由此产生的蒸气沿着一根玻璃管,被称为”分馏柱”分开。分馏塔放在之间烧瓶含有混合物和”Y”适配器,和通常充满着玻璃或塑料珠子,从而提高了之间被蒸馏液体分离。分馏导致更好的分离比简单蒸馏,因为玻璃珠在分馏塔提供 ‘理论板’ 的蒸气可以凝结,reevaporate,然后再凝结,本质上蒸馏混合物遍又一遍。一个理论板就相当于一个汽化冷凝周期,相当于一个简单的蒸馏。更易挥发的液体将逐步迈向分馏塔的顶部,低沸点的液体则留到水底,给予液体之间更好的分离。蒸气最终达到凝汽器,在那里它冷却,然后滴进收集容器。
沸点组成曲线 (图 2) 可以用于预测的实现所需的分离所需的理论板数。曲线的数据以得出了不同组成、 加热到沸点,记录温度,并分析的水汽上述每种混合物的成分的混合物。更低的曲线表示液体的组成,上部的曲线表示气相组成。在这个实验中,起始的混合物是环己烷 50%和 50%甲苯。由起价 50: 50 点 x 轴绘制线径直的液体的曲线,然后在水平直行到蒸汽曲线,再到 x 轴,可以看到,在 50%环己烷的简单蒸馏: 将由 50%甲苯混合物,第一滴馏出液组成大约 80%的环己烷和 20%的甲苯。
图 2。沸点-组成曲线环己烷和甲苯显示一个简单的蒸馏。
分馏法基本上是大量简单蒸馏依序执行、 被确定的理论板数的人数。它是分离的可以使用的沸点组成曲线来确定获得一定程度 (图 3) 所需的理论板数。入手是环己烷 50%和 50%甲苯的混合物,两个理论塔板效率等于分馏柱会是 95%纯环己烷的馏出物中。第三个理论塔板会导致约 99%的馏出物中纯环己烷。然而,在实践中,情况不是那么简单的。作为蒸馏所得,蒸馏烧瓶中的混合物变得越来越丰富在甲苯中一样 — — 从根本上说,导致液体的组成曲线上最右边是新的初始混合物。为了获得纯环己烷,需要更多的理论板,但分馏塔的效率固定的,所以到达一个点,它可以不再提供所需的分离,导致包含更多的污染痕迹的甲苯的馏出物中程度。
图 3。沸点-组成曲线环己烷和甲苯显示三个理论塔板。
蒸馏曲线,阴谋与卷的馏出物的温度,如图 4所示。精馏最初发生在约 82 ° C,沸点的环己烷。相对稳定的温度显示几乎纯净的材料蒸馏在这段时间。然后,温度上升,达到另一个高原约 110 ° C,沸点的甲苯。之间的温度逐步升高,两个高原不立即。记得,在蒸馏所得及环己烷清除后,则更多的理论板所需以获得所需的纯度。在一些点分馏塔板其最大数量,可以不再有效分离混合物,意味着将馏出物包含环己烷和甲苯的组件。一旦被蒸馏的环己烷,然而,纯甲苯开始蒸馏二温度高原可见一斑。若要获得最佳的蒸馏,蒸馏率必须是常数和相对较慢。
图 4。环己烷和甲苯分馏曲线。
1.设置的分馏装置
分馏装置 | 数量 |
反驳置物架 (环架) | 2 |
螺旋千斤顶 | 1 |
夹钳 | 4 |
凯克夹具 | 4 |
磁搅拌棒 | 1 |
分馏塔 | 1 |
“Y”适配器 | 1 |
温度计 & 温度计适配器 | 1 |
100 mL 圆底烧瓶 | 1 |
凝汽器水入口和出口管 | 1 |
收集适配器 | 1 |
25 毫升量筒 | 3 |
加热地幔 | 1 |
搅拌板 | 1 |
表 1。分馏装置部件。
注意: 所有的玻璃器皿,除了量筒,应该有毛玻璃接头
图 5。分馏装置。
2.蒸馏的筹备工作
3.执行蒸馏
精馏是净化液体在实验室的设置和帐户的达 95%的所有工业分离过程中的最常用的技术之一。
此方法分离和净化液体基于它们的波动性或其分子逃避作为气体汽液两相的趋势。提取一个解决方案,它被加热,直到最挥发性化合物开始汽化。由此产生蒸汽,然后浓缩成纯净的液体,称为馏出液,和收集。
最常见的精馏方法是: 简单的蒸馏,员工只是一个汽化冷凝周期和分馏法,采用多个蒸发冷凝周期。
这个视频将审查背后简单原则和分馏,典型的实验室蒸馏装置,并演示示例分馏过程。最后,精馏过程的应用程序将被覆盖。
当液体受热时,其分子动能增加,造成了一些分子转从液态变成气态。这个过程,叫做汽化,增加以上的液体相对于大气压力的蒸汽压。液体的蒸汽压等于周围环境空气压力,而此时 ‘泡沫’ 的蒸气形式内的液体被称为它的沸点温度。超过这个温度,液体会完全蒸发成气体。
在简单的蒸馏,混合物在烧瓶中,加热和由此产生的蒸汽通入冷凝列在哪里他们是冷却并冷凝成液体称为馏出物。此方法使用只是一个汽化冷凝周期,并生成纯馏分油混合物的液体和固体,和对不同沸点的液体混合物。
使用简单的蒸馏不能完全分离混合物的液体沸点相差少于约 30 °C 。馏出液组成,但是,可以使用一个 ‘ 沸点-图 ‘,它绘制温度为功能的液体和蒸气组成预测。例如,一个相等的环己烷和甲苯混合有 90 ° C,导致环己烷 80%和 20%甲苯气相组成和收益 80%纯馏分沸点。
沸点图预测第二次的蒸发冷凝周期,通过沸腾在大约 84 °C,80: 20 馏分结果中纯度为 95%。每个连续的周期,称为 ‘理论塔板’,增加的纯度,在那里 3 理论板导致纯度为 99%。虽然它也可以通过将多个 ‘简单蒸馏’ 设备链接在一起生成这,’ 分馏 ‘ 更有效地实现了这一点。
安装程序将添加”分馏柱,”起始烧瓶和冷凝器之间。此列通常充满着玻璃珠或金属的羊毛,提供一个大的表面面积为液体凝结凝结并重新蒸发上无数次。这将生成大量的理论塔板。
蒸气通过柱上升,凝析油环形成,慢慢向上移动,如蒸气在理论塔板上分隔。当蒸气到达顶部的列,分子与他们在哪里收集作为高纯馏出液凝汽器最高波动传入。
既然我们已经回顾了蒸馏背后的基本原则,让我们看一下环己烷的榜样: 甲苯混合物。
开始由装配分馏装置通风橱中的组成部分。地方加热地幔和搅拌盘在山脚下的干馏炉实验室杰克站提高一切 8 英寸和杰克在一起。
附上三夹反击的立场。圆底烧瓶的位置,所以它适合冲撞时入加热地幔并确保它反驳立场。
将磁力搅拌栏添加到瓶子里,把分馏柱放在上面,并确保它。
放入的分馏柱顶部的”Y”适配器。钳钳夹将它固定到蒸馏架和凯克钳钳夹然后安全它与分馏柱磨玻璃接头。
凝汽器融入”Y”适配器的向下倾斜手臂和安全接头。增加了稳定性,夹紧冷凝列到第二次蒸馏架上。
从水源连接上凝汽器的底部连接管。将第二管从上部的冷凝器连接连接到水返回港口。
安全油管、 打开水,并验证水流经冷凝器。
将收集适配器添加到冷凝的列。安全与凯剪辑这个关节和放置一个量筒在它下面。
在安装之前的温度计,降低瓶。使用一个漏斗用初始混合物填充少于一半的烧瓶。
提高烧瓶,融入分馏柱,它、 保护它。凯克钳钳夹安全这最终的毛玻璃接头,然后替换和重新定位的杰克和加热地幔。
最后,温度计放入适配器并将其放入”Y”适配器的剩余端口。调整高度的温度计灯泡,将它置于下方侧手臂的”Y”适配器,以确保准确的蒸气温度读数。
打开热板,逐渐提高温度和加热地幔,直到初始混合物开始沸腾。根据需要确保混合料继续煮,还可以调整加热板温度保持恒定蒸汽温度第一次 2 分钟的蒸馏。
看着缩合圆环形式,并且上升,对列的顶部。当第一滴液体凝结和滴入量筒,记录蒸汽温度。通过调整加热设置,直到滴从冷凝器的 1-2 每秒速度保持蒸汽温度恒定。
每个 2 毫升增量的馏出体积,记录蒸汽温度。在收集 4 毫升后,记录蒸汽温度,然后迅速替换部分填充的量筒一个空。将 4 毫升样品保存在每个有标签的药瓶,供将来分析。
继续记录蒸汽温度 2 毫升间隔和馏出物样品保存间隔 4 毫升,直到蒸汽温度明显下降和混合物停止沸腾。
请关闭灶具和水对凝汽器运行。环己烷的蒸馏现已完成,4 毫升馏出物样品可以准备核磁共振分析。
评估初始混合物和使用核磁共振波谱法,一种常用的技术评估的组成和纯度的混合物馏出物的纯度。在我们的示例中,最初的混合物的核磁共振谱显示与甲苯、 环己烷相关联的特征峰。第一次蒸馏的核磁共振谱我们收集后分馏,然而,是纯环己烷。
精馏在广泛的领域,从大型石油炼油厂到小规模威士忌剧照的应用。
若要生成白酒如伏特加或威士忌,粮食发酵产物称为 ‘洗’,即卷 10-12%的酒精,混合煮在”仍”和由此产生蒸气简单或分数的精馏,根据仍然设计和精神类型分离。这允许 ‘心’,乙醇,分开 ‘尾巴’,像丙醇和水,有更高的沸点。此外,蒸馏允许消除的 ‘头’ 像甲醇,简陋的著名造成的失明使月光。馏出物可能是大约 50%酒精如果产生从简单蒸馏或高达 95%,如果分数蒸馏水。
气相色谱法使用,如果没有几百万,理论塔板分离挥发性混合物在微尺度上使用分馏。在这里,用来刺激嗅觉神经的蜜蜂的挥发物混合物注入气相色谱仪,用来分离和识别上的时间他们才通过色谱柱为基础的化合物。
跟踪的 TNT 和 RDX 炸药气味是有选择性地分开利用蒸馏原理样品顶空。这些样本收集温度解吸管中,引入温度解吸阶段,在那里他们被加热到 350-900 度,以增加它们的波动性之间。最后,他们被选择性地凝聚使用低温冷阱和引入气相色谱仪进行分析。
你刚看了朱庇特的简介分馏。现在,您应该了解蒸馏、 简单仪器,试验和分馏和基本的分馏过程背后的基本原则。
谢谢观赏 !
环己烷甲苯混合物分馏蒸馏
馏出物纯度可以由大量的技术评估。核磁共振波谱法是最好的之一。最初的混合物蒸馏前1H NMR 谱如图 6所示。对甲苯和环己烷的信号都清晰可见。1核磁共振谱的纯环己烷和纯甲苯馏分所示数字 7和8,分别。没有污染物从其他组件被视为在每种情况下,显示了精馏的有效性。
图 6。1-使用核磁共振的环己烷和甲苯蒸馏前的混合物。
图 7。1-使用核磁共振的纯环己烷馏分。
图 8。1-使用核磁共振的纯甲苯蒸馏。
蒸馏约占 95%的所有当前工业分离过程。蒸馏的主要区别表现在实验室规模和那些执行工业上是,前者通常运行以间歇方式,而后者往往连续运行。在连续精馏,起始的混合物,蒸汽和馏出物均保持恒定的构成通过仔细补凝视材料和去除分数从蒸气和液体系统中。使用最广泛的工业应用的连续、 分馏是中石油精炼厂和天然气加工设施。在 36 ° C 以下的温度下,天然气从石油分离。其他的物质,包括石油醚和石脑油,分开前石油上游在 69-74 ° C 的范围内,此时汽油分离。
精馏还发现在食品工业中的应用。它用来生产种类繁多的含酒精的饮料,例如,威士忌、 兰姆酒和白兰地。当水果和植物材料发酵时,产生的乙醇稀溶液。蒸馏发酵的料净化和浓缩,乙醇。各种各样的其他组件,如香酯与其他类型的酒精,也收集在蒸馏过程中,占完成精神的独特的风味。
Distillation is one of the most commonly used techniques for purifying liquids in laboratory settings and accounts for up to 95% of all industrial separation processes.
This method separates and purifies liquids based on their volatility, or the tendency for its molecules to escape from the liquid phase as gaseous vapor. To distill a solution, it is heated until the most volatile compounds begin to vaporize. The resultant vapors are then condensed into a purified liquid, known as the distillate, and collected.
The most common distillation methods are: simple distillation, which employs just one vaporization-condensation cycle, and fractional distillation, which employs multiple vaporization-condensation cycles.
This video will review the principles behind simple and fractional distillation, typical laboratory distillation apparatuses, and demonstrate an example fractional distillation procedure. Finally, applications of distillation will be covered.
When a liquid is heated, the kinetic energy of its molecules increases, causing some of the molecules to transition from the liquid into the gaseous state. This process, called vaporization, increases the vapor pressure above the liquid relative to the atmospheric pressure. The temperature at which the liquid’s vapor pressure equals the surrounding environment’s air pressure, at which point ‘bubbles’ of vapor form within the liquid, is known as its boiling point. Above this temperature, the liquid will completely vaporize into a gas.
In a simple distillation, a mixture is heated in a flask, and the resultant vapors pass into a condensing column where they are cooled and condensed into a liquid called the distillate. This method uses just one vaporization-condensation cycle, and generates pure distillates from both mixtures of liquids and solids, and mixtures of liquids with vastly different boiling points.
Mixtures of liquids with boiling points differing by less than about 30 °C cannot be completely separated using simple distillation. The distillate composition, however, can be predicted using a ‘boiling point-diagram’, which plots temperature as a function of liquid and vapor composition. For example, an equal mixture of cyclohexane and toluene has a boiling point of 90 °C, resulting in a vapor composition of 80% cyclohexane and 20% toluene, and yielding an 80% pure distillate.
The boiling point diagram predicts that a second vaporization-condensation cycle, achieved by boiling the 80:20 distillate at roughly 84 °C, results in a 95% purity. Each consecutive cycle, referred to as a ‘theoretical plate,’ increases the purity of the, where 3 theoretical plates result in a 99% purity. Although it is possible to generate this by chaining multiple ‘simple distillation’ apparatuses together, ‘fractional distillation’ achieves this more efficiently.
The setup adds a “fractionating column,” between the starting flask and the condenser. This column is typically filled with glass beads or metal wool, providing a large surface area for the liquid to condense and re-evaporate onto numerous times. This generates a large number of theoretical plates.
As vapors rise through the column, a ring of condensate forms and slowly moves up as the vapors separate across the theoretical plates. When the vapor reaches the top of the column, the molecules with the highest volatility pass into the condenser where they are collected as a high purity distillate.
Now that we’ve reviewed the basic principles behind distillation, let’s walk through an example for a cyclohexane: toluene mixture.
Begin by assembling the components of the fractional distillation apparatus in the fume hood. Place the heating mantle and stir plate on top of the laboratory jack at the foot of the retort stand and raise everything 8 in. with the jack.
Attach three clamps to the retort stand. Position the round-bottom flask so that it fits snuggly into the heating mantle and secure it to the retort stand.
Add a magnetic stir bar to the flask, place the fractionating column on top, and secure it.
Fit the “Y” adaptor into the top of the fractionating column. Secure it to the retort stand with a clamp and then secure the ground-glass joint between it and the fractionating column with a keck clamp.
Fit the condenser into the downward sloping arm of the “Y” adaptor and secure the joint. For added stability, clamp the condensing column to a second retort stand.
Connect a tube from the water source to the bottom connection on the condenser. Connect a second tube from the upper condenser connection to the water return port.
Secure the tubing, turn on the water, and verify that water flows through the condenser.
Add a collection adaptor to the condensing column. Secure this joint with a keck clip and place a graduated cylinder beneath it.
Before installing the thermometer, lower the flask. Use a funnel to fill less than half of the flask with the starting mixture.
Raise the flask, fitting it back into the fractionating column, and securing it. Secure this final ground-glass joint with a keck clamp and then replace and reposition the jack and heating mantle.
Finally, fit the thermometer into an adaptor and place it into the remaining port of the “Y” adaptor. Adjust the height of the thermometer bulb, situating it just below the side arm of the “Y” adaptor to ensure accurate vapor temperature readings.
Turn on the hot plate, gradually increasing the temperature and heating the mantle until the starting mixture begins to boil. Adjust the hotplate temperature as needed to ensure that the mixture continues to boil, maintaining a constant vapor temperature for the first 2 min of the distillation.
Watch as the condensation ring forms, and rises, to the top of the column. When the first drops of liquid condense and drip into the graduated cylinder, record the vapor temperature. Keep the vapor temperature constant by adjusting the hotplate setting until drops fall from the condenser at a rate of 1–2 per second.
For each 2 mL increment of distillate volume, record the vapor temperature. After 4 mL has been collected, record the vapor temperature and then quickly replace the partially filled graduated cylinder with an empty one. Save the 4 mL sample in an individually labeled vial for future analysis.
Continue recording vapor temperatures at 2 mL intervals, and saving distillate samples at 4 mL intervals, until the vapor temperature drops significantly and the mixture stops boiling.
Turn off the hotplate and the water running to the condenser. The distillation of cyclohexane is now complete and the 4 mL distillate samples can be prepared for NMR analysis.
Evaluate the purity of both the starting mixture and the distillate using NMR spectroscopy, a common technique for assessing the composition and purity of mixtures. In our example, the NMR spectrum of the initial mixture shows the characteristic peaks associated with both toluene and cyclohexane. The NMR spectra of the first distillate we collected after fractional distillation, however, was pure cyclohexane.
Distillation has applications in a broad range of fields, from large-scale petroleum refineries to small-scale whiskey stills.
To generate distilled spirits such as vodka or whiskey, a mixture of grain fermentation products known as ‘wash,’ which is 10–12 % alcohol by volume, is boiled in a “still” and the resultant vapors separated by either simple or fractional distillation, depending on the still’s design and the type of spirit. This allows ‘the heart’, ethanol, to be separated from ‘the tails’, like propanol and water, which have higher boiling points. Additionally, distillation allows for the elimination of ‘the heads’ like methanol, which famously caused blindness in poorly made moonshine. The distillate may be around 50 % alcohol if produced from simple distillation, or as much as 95 % if fractionally distilled.
Gas chromatography uses thousands, if not millions, of theoretical plates to separate volatile mixtures using fractional distillation on a micro-scale. Here, a mixture of volatiles used to stimulate the olfactory nerves of bees were injected into the gas chromatograph, which was used to separate and identify the compounds based on the amount of time they took to pass through the chromatography column.
Trace explosive vapors of TNT and RDX were selectively separated from a sample headspace using the principles of distillation. These samples were collected in temperature desorption tubes and introduced into a temperature desorption stage, where they were heated them to between 350 and 900 degrees to increase their volatility. Finally, they were selectively condensed using a cryotrap and introduced into a gas chromatograph for analysis.
You’ve just watched JoVE’s introduction to fractional distillation. You should now understand the basic principles behind distillation, the apparatuses for simple and fractional distillation, and a basic fractional distillation procedure.
Thanks for watching!
Related Videos
Organic Chemistry
34.1K 浏览
Organic Chemistry
166.4K 浏览
Organic Chemistry
70.3K 浏览
Organic Chemistry
41.5K 浏览
Organic Chemistry
55.9K 浏览
Organic Chemistry
79.1K 浏览
Organic Chemistry
705.7K 浏览
Organic Chemistry
157.2K 浏览
Organic Chemistry
237.3K 浏览
Organic Chemistry
212.4K 浏览
Organic Chemistry
333.0K 浏览
Organic Chemistry
32.3K 浏览
Organic Chemistry
288.5K 浏览
Organic Chemistry
358.7K 浏览
Organic Chemistry
246.8K 浏览