Waiting
로그인 처리 중...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Cancer Research

קביעת ספרואידים תלת מימדיים מדגימות גידול שמקורן בחולה והערכת רגישותם לתרופות

Published: December 16, 2022 doi: 10.3791/64564

Summary

הפרוטוקול הנוכחי מתאר יצירת מודלים תלת-ממדיים של תרביות גידול מתאי סרטן ראשוניים והערכת רגישותם לתרופות באמצעות בדיקות כדאיות תאים ובדיקות מיקרוסקופיות.

Abstract

למרות התקדמות מרשימה בהבנת הביולוגיה של הגידול, הרוב המכריע של התרופות האונקולוגיות המועמדות לניסויים קליניים נכשלים, לעתים קרובות בשל חוסר יעילות קלינית. שיעור כישלון גבוה זה מאיר את חוסר יכולתם של המודלים הפרה-קליניים הנוכחיים לחזות יעילות קלינית, בעיקר בשל חוסר יכולתם לשקף את הטרוגניות הגידול ואת המיקרו-סביבה של הגידול. ניתן לטפל במגבלות אלה באמצעות מודלים תלת-ממדיים (תלת-ממדיים) של תרבית (ספרואידים) שהוקמו מדגימות גידול אנושיות שמקורן בחולים בודדים. תרביות תלת-ממדיות אלה מייצגות ביולוגיה של העולם האמיתי טוב יותר מאשר קווי תאים מבוססים שאינם משקפים הטרוגניות של הגידול. יתר על כן, תרביות תלת-ממדיות טובות יותר ממודלים של תרביות דו-ממדיות (2D) (מבנים חד-שכבתיים) מכיוון שהן משכפלות אלמנטים של סביבת הגידול, כגון היפוקסיה, נמק והיצמדות תאים, ומשמרים את צורת התא הטבעית ואת צמיחתה. במחקר הנוכחי פותחה שיטה להכנת תרביות ראשוניות של תאים סרטניים מחולים בודדים שהם תלת ממדיים וגדלים בכדוריות רב-תאיות. התאים יכולים להיגזר ישירות מגידולים של חולים או xenografts שמקורם בחולה. השיטה ישימה באופן נרחב לגידולים מוצקים (למשל, מעי גס, שד וריאות) והיא גם חסכונית, מכיוון שניתן לבצע אותה בשלמותה במעבדה טיפוסית לחקר הסרטן / ביולוגיה של התא מבלי להסתמך על ציוד מיוחד. כאן מוצג פרוטוקול ליצירת מודלים תלת-ממדיים של תרביות גידולים (ספרואידים רב-תאיים) מתאי סרטן ראשוניים ולהערכת רגישותם לתרופות באמצעות שתי גישות משלימות: בדיקת כדאיות התא (MTT) ובדיקות מיקרוסקופיות. ניתן להשתמש בספרואידים רב-תאיים אלה כדי להעריך מועמדים פוטנציאליים לתרופה, לזהות סמנים ביולוגיים פוטנציאליים או מטרות טיפוליות, ולחקור את מנגנוני התגובה והעמידות.

Introduction

מחקרי In vitro ו-in vivo מייצגים גישות משלימות לפיתוח טיפולים לסרטן. מודלים במבחנה מאפשרים שליטה ברוב משתני הניסוי ומאפשרים ניתוחים כמותיים. לעתים קרובות הם משמשים כפלטפורמות סינון בעלות נמוכה וניתן להשתמש בהם גם למחקרים מכניסטיים1. עם זאת, הרלוונטיות הביולוגית שלהם מוגבלת מטבעה, שכן מודלים כאלה משקפים רק חלקית את המיקרו-סביבה של הגידול1. לעומת זאת, מודלים in vivo, כגון xenografts שמקורם במטופל (PDX), לוכדים את המורכבות של המיקרו-סביבה של הגידול ומתאימים יותר למחקרים תרגומיים ולטיפול אינדיבידואלי בחולים (כלומר, חקירת התגובה לתרופות במודל הנגזר ממטופל בודד)1. עם זאת, מודלים in vivo אינם תורמים לגישות בעלות תפוקה גבוהה לסינון תרופות, מכיוון שלא ניתן לשלוט בפרמטרים הניסיוניים בצורה הדוקה כמו במודלים במבחנה ומכיוון שפיתוחם גוזל זמן, דורש עבודה ויקר 1,2.

מודלים במבחנה זמינים כבר מעל 100 שנה, וקווי תאים זמינים מעל 70 שנה3. במהלך העשורים האחרונים, עם זאת, המורכבות של מודלים זמינים במבחנה של גידולים מוצקים גדל באופן דרמטי. מורכבות זו נעה בין מודלים דו-ממדיים (דו-ממדיים) של תרבית (מבנים חד-שכבתיים) שהם קווי תאים מבוססים שמקורם בגידול או קווי תאים ראשוניים ועד לגישות עדכניות יותר הכוללות מודלים תלת-ממדיים (תלת-ממדיים)1. בתוך המודלים הדו-ממדיים, הבחנה מרכזית היא בין קווי התאים המבוססים והראשוניים4. קווי תאים מבוססים מונצחים; לכן, אותו קו תאים יכול לשמש באופן גלובלי לאורך שנים רבות, אשר בפרספקטיבה היסטורית, מאפשר שיתוף פעולה, הצטברות נתונים, ופיתוח אסטרטגיות טיפול רבות. עם זאת, סטיות גנטיות בקווי תאים אלה מצטברות עם כל מעבר, ובכך פוגעות ברלוונטיות הביולוגית שלהם. יתר על כן, המספר המוגבל של שורות תאים זמינות אינו משקף את ההטרוגניות של גידולים בחולים 4,5. קווי תאים סרטניים ראשוניים נגזרים ישירות מדגימות גידול שנכרתו המתקבלות באמצעות ביופסיות, עירוי פלאורלי או כריתות. לכן, קווי תאים סרטניים ראשוניים רלוונטיים יותר מבחינה ביולוגית מכיוון שהם משמרים אלמנטים של מיקרו-סביבה של הגידול ומאפייני הגידול, כגון התנהגויות בין-תאיות (למשל, דיבור צולב בין תאים בריאים וסרטניים) ופנוטיפים דמויי גזע של תאים סרטניים. עם זאת, יכולת השכפול של קווי תאים ראשוניים מוגבלת, מה שמוביל לזמן תרבית צר ומגביל את מספר תאי הגידול שניתן להשתמש בהם לאנליזות 4,5.

מודלים המשתמשים בתרביות תלת-ממדיות רלוונטיים יותר מבחינה ביולוגית מאשר מודלים של תרביות דו-ממדיות מכיוון שתנאי in vivo נשמרים. לפיכך, מודלים של תרבית תלת ממדית משמרים את צורת התא הטבעית ואת צמיחתה ומשכפלים אלמנטים של סביבת הגידול, כגון היפוקסיה, נמק והיצמדות תאים. המודלים התלת-ממדיים הנפוצים ביותר בחקר הסרטן כוללים ספרואידים רב-תאיים, מבנים מבוססי פיגומים ותרביות משובצות מטריצה 4,6,7.

הפרוטוקול הנוכחי מייצר מודלים תלת-ממדיים של תרביות גידולים (ספרואידים רב-תאיים) מתאי סרטן ראשוניים ומעריך את רגישותם לתרופות באמצעות שתי גישות משלימות: בדיקת כדאיות התא (MTT) ובדיקות מיקרוסקופיות. התוצאות המייצגות המוצגות כאן הן מסרטן השד והמעי הגס; עם זאת, פרוטוקול זה ישים באופן נרחב לסוגי גידולים מוצקים אחרים (למשל, כולנגיוקרצינומה, סרטן קיבה, ריאות ולבלב) והוא גם חסכוני, מכיוון שניתן לבצע אותו במלואו במעבדה טיפוסית לחקר הסרטן / ביולוגיה של התא מבלי להסתמך על ציוד מיוחד. הספרואידים הרב-תאיים הנוצרים באמצעות גישה זו יכולים לשמש להערכת מועמדים פוטנציאליים לתרופה, לזהות סמנים ביולוגיים פוטנציאליים או מטרות טיפוליות, ולחקור את מנגנוני התגובה והעמידות.

פרוטוקול זה מחולק לשלושה חלקים: (1) ייצור, איסוף וספירה של הספרואידים לקראת השימוש בהם כמודל לבדיקת יעילות התרופה; (2) בדיקת MTT להערכת יעילות התרופה על הספרואידים; ו-(3) הערכה מיקרוסקופית של שינויים מורפולוגיים בעקבות הטיפול בכדורידים בתרופות כגישה נוספת להערכת יעילות התרופה (איור 1).

Subscription Required. Please recommend JoVE to your librarian.

Protocol

איסוף דגימות הגידול האנושי המשמשות לתרביות תאי הגידול הראשוניות בוצע בהתאם לפרוטוקולים שאושרו על ידי ועדת הביקורת המוסדית (IRB) במרכז הרפואי רבין ובהסכמה מדעת בכתב של החולים. בין החולים הזכאים להשתתף במחקר היו חולי סרטן מבוגרים וילדים עם סרטן שד, מעי גס, כבד, ריאה, נוירואנדוקרינה, שחלות או לבלב שאינו גרורתי, סרטן ילדים כלשהו או סרטן גרורתי כלשהו. קריטריון ההחרגה היחיד היה היעדר היכולת לתת הסכמה מדעת.

1. דור ואיסוף של ספרואידים

הערה: בידוד של תאי גידול ראשוניים יכול להתבצע כמתואר על ידי קודאק ואחרים 8. חשוב לציין, תאי גידול ראשוניים המשמשים לייצור הספרואידים יכולים להיגזר ישירות מדגימות המטופל המתקבלות על ידי ביופסיה, כריתה וכו ', או בעקיפין באמצעות דגימות גידול ממודלים של xenograft (PDX) שמקורם בחולה, כפי שתואר על ידי Moskovits et al.9.

  1. הכינו תרחיף חד-תאי של תרביות תאי גידול ראשוניים דבקים במפגש של 75%-100% על ידי לקיחת בקבוק קטן (T25) עם תרבית תאים ראשונית דבק חד-תאי, הסרת מדיית תרבית התא, שטיפה עם PBS, ולאחר מכן הוספת 1 מ"ל של 1x Accutase (תמיסת ניתוק תאים) (ראה טבלת חומרים) למשך 3 דקות ב-37°C.
  2. נטרל את תמיסת Accutase על ידי הוספת 5 מ"ל של מדיום תרבית תאים (מדיום תרבית RPMI-1640 בתוספת 10% FBS, 1:100 פניצילין-סטרפטומיצין, 1% חומצות אמינו לא חיוניות ו-1% L-גלוטמין; ראה טבלת חומרים).
  3. שואפים את התאים עם פיפטה סרולוגית 10 מ"ל, ומפקידים אותם בצינור חרוטי 15 מ"ל. צנטריפוגה את הצינור ב 800 x גרם במשך 5 דקות בטמפרטורת החדר.
  4. מוציאים את מדיום תרבית התא, מוסיפים 5 מ"ל של מדיום תרבית תאים טרי על גבי גלולת התא, ומערבבים בעדינות.
  5. לספור את התאים קיימא עם hemocytometer10. כדי לעשות זאת, לקחת aliquot של 50 μL של השעיית התא, ומערבבים אותו עם 50 μL של כחול טריפאן. ספור את התאים החיים (התאים השליליים לצבע כחול) וחשב את המספר הכולל של תאים חיים בהשעיה.
  6. הכינו "מדיום תרבית תלת-ממדי" (מדיום תרבית תאים בתוספת מטריצת 5% קרום מרתף; ראו טבלת חומרים).
    הערה: "מדיום התרבית התלת-ממדית" הוא דמוי נוזל בטמפרטורת החדר. ב 37 ° C, עקביות הופך להיות יותר כמו ג'ל (כך התאים להישאר יחד), אם כי זה עדיין יכול להיות pipetted (שכן הוא מכיל רק 5% מטריצת קרום מרתף).
  7. חישוב מספר התאים הדרושים לבדיקה ואת הנפח הכולל הנדרש; כל באר חייבת להכיל 2,000-8,000 תאים ב-200 מיקרוליטר של תווך.
  8. הכינו תרחיף תאים עם מספר התאים הרצוי (למשל, 4,000 תאים) ב-200 מיקרוליטר של "מדיום התרבית התלת-ממדית" וערבבו בעדינות עם פיפטה כדי להבטיח פיזור הומוגני.
  9. מעבירים את המתלה למאגר צנרת. באמצעות פיפטה רב-ערוצית, הוסף 200 μL של תרחיף התא לכל באר של צלחת חיבור נמוכה במיוחד 96 בארות (ראה טבלת חומרים). לפני כל אוסף של תאים, מערבבים היטב את התרחיף.
  10. צנטריפוגה את הצלחת ב 300 x גרם במשך 10 דקות בטמפרטורת החדר כדי לאכוף את אשכולות התאים, ובכך לשפר את צבירת התא, ולדגור את הצלחת ב 37 ° C באינקובטור 5% CO2 לח.
  11. כל 2-3 ימים, לרענן את "מדיום תרבות 3D". צנטריפוגו את הצלחת ב 300 x גרם במשך 10 דקות בטמפרטורת החדר, להסיר בעדינות ולהשליך 50% של המדיום (100 μL), ולהוסיף 100 μL של "מדיום תרבית 3D" טרי כדי להחליף את הפתרון הקיים. חזור על שלב 1.11, והחזיר את הצלחת לאינקובטור לחות 37°C, 5% CO2.
    הערה: הסרת המדיום חייבת להתבצע כאשר הצלחת מוחזקת ב 45°, ואת המדיום יש לאסוף רק מהחלק העליון כדי למנוע איסוף התאים. אין להשתמש במערכת שאיבת ואקום. את המדיום הטרי יש להוסיף לאט ובעדינות כדי לא לשבש את הספרואידים, שכבר החלו להיווצר.
  12. בדוק את התאים תחת מיקרוסקופ כל 1-2 ימים כדי לפקח על היווצרות הספרואידים. מדדו את קוטר הספרואידים שנוצרו באמצעות כלי ה"קנה מידה" בתוכנת ההדמיה (ראו טבלת חומרים).
    הערה: בדיקה מיקרוסקופית אמורה לגלות תחילה גופים עגולים עד אליפטיים לא סדירים המקבלים צורה ספרואידית ככל שהזמן מתקדם11,12.
    1. כאשר קוטר הספרואיד מגיע ל 100-200 מיקרומטר, בצע את ניסויי יעילות התרופה.
      הערה: ניסויי יעילות התרופה מבוצעים כאשר הספרואידים מגיעים לקוטר זה, שכן באותו זמן, רוב התאים מתרבים, מה שתורם להערכת התגובה לטיפול. ספרואידים בקוטר גדול יותר מכילים ליבה נמקית ושכבה שקטה11,12, וכתוצאה מכך שיעור קטן יותר של תאים מתרבים המגיבים לטיפול.
  13. לאיסוף ספרואידים, השתמשו בפיפט של 1,000 מיקרוליטר כדי לאסוף את הספרואידים מכל באר, והפקידו אותם בצינור חרוטי של 15 מ"ל.
    הערה: ספרואידים הם שבירים מטבעם ודורשים טיפול עדין. בעת העברת התווך עם הספרואידים לתוך הצינור החרוטי, להחזיק את הצינור ב 45°, פיפטה לאט על הקיר של הצינור. ספרואידים נראים לעין.
  14. צנטריפוגו את הצינור החרוטי ב 300 x גרם במשך 5 דקות בטמפרטורת החדר, בזהירות לשאוף ולהשליך את supernatant באמצעות פיפטה.
  15. מוסיפים 0.5 מ"ל של מדיום תרבית התא, ומשעיפים מחדש את הגלולה היטב אך בעדינות. הימנעו מיצירת בועות.
  16. בצע ספירה ספרואידית לפי השלבים הבאים.
    1. השתמש בלוח של 96 בארות וצייר סימן פלוס בחלק התחתון של באר כדי לחלק את הבאר לרבעים (כדי לעזור לעקוב אחר הספירה).
    2. מוסיפים 50 μL של המתלה לבאר, וסופרים את הספרואידים ידנית תחת המיקרוסקופ (באמצעות עדשה אובייקטיבית פי 10).
    3. ספרו את הספרואידים בכל רביע, היזהרו שלא לספור פעמיים, וחשבו את המספר הכולל של הספרואידים בבאר.
      הערה: לדיוק הספירה, ספרו לפחות 50 כדוריות בבאר. אם יש פחות מ-50 ספרואידים, ערבבו בעדינות את המתלה כדי להבטיח פיזור הומוגני, וספרו שוב באמצעות נפח גדול יותר של המתלה שנוסף לבאר חדשה. לחלופין, אם יש פחות מ -50 ספרואידים בבאר, ניתן לצנטריפוגה את הספרואידים ולהשהות אותם מחדש בעדינות בנפח של <0.5 מ"ל. אם יש מעל 100 ספרואידים, הוסיפו מדיום תרבית תאים לתרחיף הספרואידים, ערבבו בעדינות וספרו מחדש.
    4. חשב את ריכוז הספרואידים (ספירה ספרואידית/נפח ספירה [μL]), ולאחר מכן חשב את המספר הכולל של הספרואידים בתרחיף (ריכוז ספרואידים × נפח כולל).

2. בדיקת יעילות התרופה (בדיקת MTT)

הערה: לקבלת פרטים, ראה van Meerloo et al.13. כמו כן, עבור בדיקת MTT, יש להשתמש רק בתווך תרבית התא ולא ב"מדיום התרבית התלת-ממדית" (הוספת מטריצת קרום המרתף אינה הכרחית ועלולה להפריע לבדיקת MTT).

  1. בצינור חדש, הכינו תרחיף ספרואידי בריכוז של 200 ספרואידים לכל 200 מיקרוליטר של מדיום תרבית תאים (מדיום תרבית RPMI-1640 בתוספת 10% FBS, 1:100 פניצילין-סטרפטומיצין, 1% חומצות אמינו לא חיוניות ו-1% L-גלוטמין).
    1. עבור כל טיפול תרופתי, להכין מלאי של spheroids בצינור 15 מ"ל. חשב את הכמות הדרושה לכל תרופה לפי מספר הבארות הדרושות לחזרות: (5-8) × 200 μL. הוסף את התרופה לצינור לריכוז הסופי הדרוש.
      הערה: עיין בסעיף התוצאות המייצגות לגבי התרופות המשמשות במחקר הנוכחי והמינון שלהן. כמו כן, הפרטים המסחריים של התרופות מפורטים בטבלת החומרים.
  2. מעבירים 200 μL של תרחיף הספרואיד לבארות של צלחת חיבור 96 בארות נמוכה במיוחד, ודגרים על הצלחת ב 37 ° C באינקובטור לח 5% CO2. אין להשתמש בשורות ובעמודות החיצוניות של צלחת 96 הקידוחים לבדיקה, שכן בארות אלה מאופיינות באידוי מוגבר, מה שעלול להוביל לשונות מוגברת בין הניסויים החוזרים; במקום זאת, הוסף PBS לבארות אלה.
    הערה: חשוב שתרבית הספרואידים תהיה הומוגנית לפני שהתרבות תשולב בצלחת בת 96 הקידוחים. כמו כן, תנאי בקרה (כלומר, ספרואידים לא מטופלים) חייב להיכלל בכל ניסוי.
  3. לאחר הדגירה על הספרואידים עם תרופת המחקר במשך 24-72 שעות, צנטריפוגו את הצלחת ב 300 x גרם במשך 5 דקות בטמפרטורת החדר, ולהסיר בעדינות 170 μL של מדיום תרבית התא, משאיר 30 μL (הכולל את הספרואידים) בתחתית הבאר.
    הערה: הסרת 170 μL של מדיום תרבית התא חייבת להיעשות בזהירות, כדי לא להסיר את הספרואידים. החזיקו את הצלחת בטמפרטורה של 45°, והניחו יד אחת (עם כפפה כהה לניגוד) מתחת לבארות כך שהספרואידים יהיו גלויים (נקודות לבנות).
  4. הכינו את תמיסת MTT (0.714 מ"ג/מ"ל בסל"ד נטול פנול, ראו טבלת חומרים).
  5. הוסף 70 μL של תמיסת MTT לכל באר לנפח סופי של 100 μL לכל באר (ריכוז MTT הסופי בבאר יהיה 0.05 מ"ג לכל 100 μL). בנוסף, להכין "ריק" בארות עם פתרון MTT ללא תאים.
    הערה: MTT רגיש לאור. לכן, יש לכבות את האור במכסה המנוע, ולכסות את הצינור המכיל את תמיסת MTT ברדיד אלומיניום.
  6. לדגור על הצלחת ב 37 ° C ב 5% CO2 אינקובטור לח במשך 3-4 שעות עד שינוי בצבע של תמיסה בבארות (צבע סגול מייצג תאים חיים) הוא ציין.
  7. כאשר נצפה שינוי, הוסף 100 μL של תמיסת עצירה (0.1N HCl באיזופרופנול) לכל באר, וערבב בעדינות את תוכן הבארות מבלי ליצור בועות.
  8. קרא את בליעת הלוח בקורא פלואורומטר-ELISA (ראה טבלת חומרים) באורך גל של 570 ננומטר ובאורך גל רקע של 630-690 ננומטר.
    הערה: אם קורא Fluorometer-ELISA הזמין אינו יכול לקרוא את לוח 96 הקידוחים בחיבור נמוך במיוחד, העבר את התוכן של כל באר ללוח 96 בארות שטוח תואם.
  9. חשב את כדאיות התא לפי השלבים הבאים.
    1. עבור כל באר, לחשב את "האות הספציפי" ("אות ספציפי" = האות ב 570 ננומטר - האות ב 630-690 ננומטר). לאחר מכן, חשב את הערך הממוצע של בארות "ריק", ולהפחית ערך זה מכל באר.
    2. חשב את הממוצע של "אותות ספציפיים" בבארות הבקרה המכילות תאים שלא טופלו בתרופת המחקר ("AV-SS-unt").
    3. חישוב הכדאיות (אחוז) של תאים בכל באר ביחס לבארות עם תאים לא מטופלים.
      הערה: כדאיות = (אות ספציפי בכל באר/"AV-SS-unt") × 100

3. ניטור וניתוח השינויים המורפולוגיים בספרואידים

הערה: באשר לבדיקת MTT, יש להשתמש רק בתווך תרבית התא ולא ב"מדיום התרבית התלת-ממדית" בהערכה זו (הוספת מטריצת קרום המרתף אינה הכרחית ועלולה להפריע לניתוח).

  1. לאחר ספירת הספרואידים, יש לדלל את התרחיף בתווך תרבית התאים (מדיום תרבית RPMI-1640 בתוספת 10% FBS, 1:100 פניצילין-סטרפטומיצין, 1% חומצות אמינו לא חיוניות ו-1% L-גלוטמין) לכ-1-2 ספרואידים לכל 20 מיקרוליטר.
  2. שים 80 μL של מדיום תרבית תאים לתוך הבארות של צלחת חיבור נמוך במיוחד 96 בארות, ולאחר מכן להוסיף 20 μL של השעיה ספרואיד לבארות.
    הערה: הבארות יכילו אפוא 1-2 ספרואידים בנפח של 100 μL.
  3. בדוק היטב את הבארות תחת המיקרוסקופ, וסמן את הבארות המכילות ספרואיד אחד, כפי שהם ישמשו לניתוח זה.
  4. הכינו את תרופת המחקר בריכוז שהוא פי שניים מריכוז העניין. הוסף 100 μL של תמיסת התרופה לבארות הרלוונטיות (הריכוז הכולל בבאר יהיה אז 1x).
  5. צלם תמונה של כל באר ביום 0 (לפני הוספת תרופת המחקר) והשתמש בכלי "קנה מידה" בתוכנת ההדמיה (ראה טבלת חומרים) כדי לקבוע את הקטרים של הספרואידים.
  6. דוגרים על הצלחת בטמפרטורה של 37 מעלות צלזיוס באינקובטור לח של 5% CO2, ובוחנים את המורפולוגיה ומודדים את קוטר הספרואידים (באמצעות כלי ה"סולם") מדי יום במשך 3-7 ימים, תלוי מתי נצפתה השפעת התרופה (למשל, הפצת תאים, תרמילים פולשניים, הרס מבנה וכו').
  7. בסוף הניסוי, שרטט את השינויים בקטרים הספרואידים (ביחס ליום 0) לאורך זמן.
    הערה: שינוי (אחוזים) = (קוטר הספרואיד ביום מסוים/קוטר הספרואיד ביום 0) × 100

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

פרוטוקול זה מציג נהלים ליצירת תרבית הומוגנית של ספרואידים מתאי גידול ראשוניים, הערכה כמותית של יעילות התרופה על תרבית ספרואידים (בדיקת MTT), וקביעת ההשפעה של תרופות מחקר על מורפולוגיה ספרואידית. מוצגים נתונים מהניסויים המייצגים בספרואידים שנוצרו מתרביות תאי סרטן המעי הגס והשד. ניסויים דומים בוצעו באמצעות סוגי גידולים אחרים, כולל כולנגיוקרצינומה, סרטן קיבה, ריאות ולבלב (הנתונים אינם מוצגים). כל הניסויים המוצגים כאן בוצעו בשלשה.

איור 2 מראה את הספרואידים שנוצרו מתרבית תאי סרטן המעי הגס הראשונית. כפי שניתן לראות באיור 2, מספר הספרואידים שנוצרו תלוי במספר התאים שנזרעו בתחילה בכל באר. צמיחת הספרואידים לקוטר של מעל 100 מיקרומטר ארכה 10-14 ימים. מקורם של תאי הגידול (למשל, חולים שונים ומקורות שונים) קבע את קצב הגדילה. זריעת הבארות בתאים נוספים לא קיצרה את הזמן הדרוש לייצור ספרואידים אלא הגדילה את מספר הספרואידים שנוצרו. יש לציין כי לאחר תרבית ממושכת של ספרואידים של סרטן המעי הגס, הם החלו להיצמד זה לזה ויצרו אשכולות של ספרואידים במבנים דמויי ענבים (איור 3), מה שמנע תרבית הומוגנית, ולכן אסר על השימוש בכדורידים בבדיקות MTT.

איור 4 מציג את ההשפעה של שלושה טיפולים (10 מיקרומטר פלבוציקליב, 10 מיקרומטר סוניטיניב, והשילוב שלהם ב-10 מיקרומטר כל אחד) על הכדאיות של ספרואידים שמקורם בשני סוגי סרטן עיקריים. במקרה זה, מודל PDX הוקם תחילה, ותאי הגידול ששימשו לניתוח הספרואידים נגזרו ממודל PDX9. מודל PDX הראשון נקבע באמצעות דגימת סרטן המעי הגס מחולה גבר בן 50, והשני באמצעות דגימת סרטן השד מאישה בת 62. כפי שהודגם באיור 4A,B, לאחר 3 ימי טיפול, השילוב של פלבוציקליב עם סוניטיניב הוביל לירידה משמעותית בכדאיות כפי שנמדדה בבדיקת MTT. כפי שניתן לראות באיור 4C,D, השינויים המורפולוגיים שהתרחשו עם הטיפול היו ברורים מאוד. ביום 0, כל הספרואידים היו שלמים. לעומת זאת, ביום השלישי, הספרואידים שטופלו בביקורת (DMSO) עדיין היו שלמים, ואילו הספרואידים שטופלו בשילוב פורקו, והמורפולוגיה שלהם הייתה "פתוחה", כאשר התאים התנתקו מהמבנה המוצק, מה שמרמז על הרס המבנה הכדורי.

איור 5 מציג את המעקב אחר הספרואידים לאורך זמן. ספרואידים אלה, שנוצרו מתאי סרטן השד שמקורם במטופלת בת 44, טופלו באחד משני שילובים (trastuzumab [10 מיקרוגרם / מ"ל] בתוספת וינורלבין [1 מיקרוגרם / מ"ל], או 5-fluorouracil [200 מיקרומטר] בתוספת ציספלטין [300 מיקרומטר]). כפי שניתן לראות באיור 5A, גודל הספרואידים שטופלו ב-5-fluorouracil plus cisplatin הוקטן ביום ה-3, והספרואידים נהרסו לחלוטין ביום ה-7. לעומת זאת, לטיפול בטרסטוזומאב בתוספת וינורלבין הייתה השפעה מינורית בלבד על המורפולוגיה של הספרואידים (למשל, רמה מסוימת של מבנה "פתוח"), אך ההשפעה לא הייתה משמעותית. איור 5B מציג את השינוי הממוצע בקוטר הספרואידים ביחס ליום 0 (חמישה ספרואידים היו במעקב בכל קבוצת טיפול).

Figure 1
איור 1: סקירה כללית של הפרוטוקול לקביעת ספרואידים תלת-ממדיים מדגימות גידול שמקורן במטופל והערכת רגישותם לתרופות. לחץ כאן כדי להציג גרסה גדולה יותר של איור זה.

Figure 2
איור 2: היווצרות ספרואידים מתרבית תאי סרטן המעי הגס הראשונית לאורך זמן לפי מספר תאי הזרע הראשוניים. מספר שונה של תאים נזרעו ב"מדיום תרבית תלת-ממדית" בלוח חיבור נמוך במיוחד של 96 בארות ונצפו תחת המיקרוסקופ (הגדלה פי 4). סרגל קנה מידה = 100 מיקרומטר. לחץ כאן כדי להציג גרסה גדולה יותר של איור זה.

Figure 3
איור 3: ספרואידים מתאי סרטן המעי הגס הראשוניים (עם זריעת תאים ראשונית של 2,000 לכל באר) לאחר 12 יום בתרבית. שתי הדוגמאות (A,B) מראות צבירים שנוצרו על ידי חיבור של ספרואידים זה לזה (הגדלה פי 10). סרגל קנה מידה = 100 מיקרומטר. לחץ כאן כדי להציג גרסה גדולה יותר של איור זה.

Figure 4
איור 4: ההשפעות של פלבוציקליב (10 מיקרומטר), סוניטיניב (10 מיקרומטר) והשילוב שלהם (10 מיקרומטר כל אחד) על ספרואידים מתאי גידול ראשוניים, כולל סרטן המעי הגס וסרטן השד (שמקורו ב-PDX). בדיקת MTT נערכה על ספרואידים שמקורם (A) בתאי סרטן השד ו-(B). אותות MTT נורמלו לערכים מתאים שטופלו ב- DMSO. הערכים מייצגים את האמצעים בין ארבעה לשמונה עותקים משוכפלים. קווי השגיאה מייצגים SEM. *p < 0.05 לעומת סוכן יחיד (t-test). השפעות הטיפולים השונים על גדילת התאים הוערכו גם הן מיקרוסקופית ביום 0 ולאחר 3 ימי טיפול בכדורידים שמקורם בתאי סרטן השד (C) ו-(D) בתאי סרטן השד (הגדלה פי 10). סרגל קנה מידה = 100 מיקרומטר. האיור נלקח מ Moskovits et al.9. אנא לחץ כאן כדי להציג גרסה גדולה יותר של איור זה.

Figure 5
איור 5: ההשפעות של trastuzumab (10 מיקרוגרם/מ"ל) בתוספת וינורלבין (1 מיקרוגרם/מ"ל) ו-5-פלואוראורציל (200 מיקרומטר) בתוספת ציספלטין (300 מיקרומטר) על ספרואידים שמקורם בסרטן השד לאורך זמן. (A) כל באר הכילה ספרואיד אחד ונוטרה לאורך זמן תחת המיקרוסקופ (הגדלה של פי 10). סרגל קנה מידה = 100 מיקרומטר. (B) השינוי בקוטר הספרואידים (ביחס ליום 0) במשך הטיפול. *p = 0.05 עבור 5-fluorouracil בתוספת cisplatin לעומת קבוצת ביקורת (t-test). כל קבוצת טיפול כללה ארבע עד שש בארות, עם ספרואיד אחד בכל באר. השינוי הממוצע מוצג. קווי השגיאה מייצגים SEM. לחץ כאן כדי להציג גרסה גדולה יותר של איור זה.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

הפרוטוקול הנוכחי מתאר שיטה פשוטה ליצירת תרביות תאים ראשוניות תלת-ממדיות (ספרואידים) שמקורן בדגימות גידול אנושיות. ספרואידים אלה יכולים לשמש לניתוחים שונים, כולל הערכת מועמדים פוטנציאליים לתרופות ושילובי תרופות, זיהוי סמנים ביולוגיים פוטנציאליים או מטרות טיפוליות, וחקירת מנגנוני התגובה והעמידות. הפרוטוקול משתמש בתאי גידול ראשוניים שמקורם ישירות בדגימות חולים או בתאי גידול ממודלים של PDX, שניתן לקבוע באמצעות דגימות של מטופלים. הגישה השנייה מאפשרת ביצוע ניסויים במבחנה ו-in vivo עם אותו גידול ראשוני. עקביות הוכחה בעבר בתוצאות ניסויי רגישות לתרופות בין מודלים של PDX לבין תרביות תלת-ממדיות הנגזרות ממודלים אלה9, ובכך תומכת ברלוונטיות של גישת in vitro/in vivo זו.

היתרונות העיקריים של הפרוטוקול הנוכחי כוללים את תחולתו הרחבה על רוב הגידולים המוצקים ואת עלות-תועלתו, הנובעת מהתאמתו ליכולות/ציוד האופייניים למעבדות לחקר הסרטן/ביולוגיה של התא (כלומר, אין צורך בציוד ייעודי או במיקור חוץ). בנוסף, הפרוטוקול הנוכחי מייצר אוכלוסייה ספרואידית הומוגנית, המאפשרת שימוש במבחני כדאיות כמותיים בעלי תפוקה גבוהה (למשל, MTT). יצירת אוכלוסיית ספרואידים הומוגנית חשובה להשגת תוצאות משמעותיות, שכן מחקרים הוכיחו כי גודל הספרואידים משפיע על התגובה לטיפול. ספרואידים גדולים יותר, בניגוד לספרואידים קטנים יותר, מאופיינים בליבה נמקית. עם זאת, רוב התאים נמצאים בשלב הצמיחה הליניארית בכדוריות קטנות יותר. יתר על כן, גודלו של הספרואיד משפיע גם על נוקשות מבנה הרקמה שלו, מה שעלול להשפיע על דיפוזיה של תרכובות (כגון אלה המשמשות לבדיקות הכדאיות) לתוך הספרואיד14. המגבלה העיקרית של הפרוטוקול הנוכחי היא שגם עם תחולתו הרחבה, ישנם מקרים שבהם הגישה אינה מצליחה לייצר ספרואידים. חשוב לציין, כישלון כזה אינו ספציפי לסוג הגידול אלא ספציפי לחולה. מחקרים נוספים נדרשים כדי לחקור מדוע דגימות גידול מחולים מסוימים אינן יוצרות ספרואידים באמצעות פרוטוקול זה.

הפרוטוקול הנוכחי מבוסס על שני עקרונות מרכזיים: (1) תרחיף תאים ללא אשכולות תאים (כלומר, תרחיף חד-תאי) ו-(2) שימוש בלוח חיבור נמוך במיוחד עם תווך המכיל 5% מטריצת קרום מרתף (מטריצה חוץ-תאית מסיסה). המספר הראשוני של תאי זרע משפיע על מספר הספרואידים שנוצרים, אך לא על הזמן הדרוש להיווצרות ספרואידים, מה שמרמז על כך שכל ספרואיד נוצר מתא גידול יחיד. יש לציין כי התקבצות הספרואידים מתרחשת, במיוחד לאחר דגירה ממושכת. קיבוץ זה משבש את התרבות ההומוגנית ואוסר על השימוש ב-MTT (בשל הקושי לחלק מספר שווה של ספרואידים לכל באר). ניתן להימנע מקיבוץ זה על ידי דילול התרבית והעברת הספרואידים לבארות גדולות יותר. אם לא ניתן להשיג תרבית הומוגנית, לא ניתן להשתמש במבחני MTT, אם כי עדיין ניתן לבצע הערכה מורפולוגית ומדידת קוטר הספרואידים. יש לציין כי ההערכה המורפולוגית דורשת עבודה רבה יותר, שכן היא דורשת הקצאה של ספרואיד אחד לכל באר וניטור של כל ספרואיד תחת המיקרוסקופ.

קביעת המספר המתאים של ספרואידים לבדיקת MTT חשובה לפרשנותו. לכן, מומלץ ליצור תחילה עקומה סטנדרטית עם מספרים ידועים של ספרואידים (למשל, 50, 100, 200 ו 400 לכל באר, בהעתקים) על מנת לקבוע את המספר האופטימלי של ספרואידים עבור מבחן MTT. אמצע הטווח הליניארי של העלילה חייב לשמש לניתוח כך שיהיו מספיק ספרואידים כדי לזהות אות אך לא יותר מדי (כלומר, כדי שלא יגיעו לשלב המישורי של האות). יתר על כן, השימוש בטווח האמצעי מאפשר לשמור על האות בטווח הליניארי במקרים של תגובה לתרופה (כלומר, אות מופחת), כמו גם אי תגובה (כלומר, המשך הצמיחה של הספרואיד והגברת הסיגנל). לבסוף, מכיוון שבדיקת MTT מעריכה את הפעילות המטבולית של התא, שיכולה להיות שונה בין גידולים מחולים שונים, יש ליצור עקומה סטנדרטית עבור כל דגימת גידול ראשונית.

לסיכום, פרוטוקול זה ליצירת מודלים תלת-ממדיים של תרביות גידול מתאי סרטן ראשוניים והערכת רגישותם לתרופות באמצעות בדיקת כדאיות התא (MTT) ובדיקה מורפולוגית תחת המיקרוסקופ מייצג כלי בעל ערך רלוונטי ביולוגית המשלים את גישות המבחנה הדו-ממדיות הנוכחיות כמו גם את גישות in vivo .

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

למחברים אין מה לחשוף.

Acknowledgments

ללא.

Materials

Name Company Catalog Number Comments
5 Fluorouracil TEVA Israel lot 16c22NA Fluorouracil, Adrucil
Accutase Gibco A1110501 StemPro Accutase Cell Dissociation
Cisplatin TEVA Israel 20B06LA Abiplatin, 
Cultrex  Trevigen 3632-010-02 Basement membrane matrix, type 3
DMSO (dimethyl sulfoxide) Sigma Aldrich D2650-100ML
Fetal bovine serum (FBS) Thermo Fisher Scientific 2391595
Flurometer ELISA reader Biotek Synergy H1 Gen5 3.11
Hydrochloric acid (HCl)  Sigma Aldrich 320331 for stop solution
ImageJ National Institutes of Health, Bethesda, MD, USA  Version 1.52a Open-source software ImageJ
Isopropanol Gadot P180008215 for stop solution
L-glutamine Gibco 1843977
MTT  Sigma Aldrich M5655-1G 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Non-essential amino acids  Gibco 11140050
Palbociclib   Med Chem Express CAS # 571190-30-2
PBS Gibco 14190094 Dulbecco's Phosphate Buffered Saline (DPBS)*Without Calcium and Magnesium
Penicillin–streptomycin  Invitrogen 2119399
Phenol-free RPMI 1640 Biological industries, Israel 01-103-1A
Pippeting reservoir Alexred RED LTT012025
RPMI-1640 culture medium  Gibco 11530586
Sunitinib Med Chem Express CAS # 341031-54-7
Trastuzumab F. Hoffmann - La Roche Ltd, Basel, Switherland 10172154 IL Herceptin
Trypan blue 0.5% solution Biological industries, Israel 03-102-1B
Ultra-low attachment 96 well plate Greiner Bio-one 650970
Vinorelbine Ebewe 11733027-03 Navelbine

DOWNLOAD MATERIALS LIST

References

  1. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., Searson, P. C. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology. 4, 12 (2016).
  2. Yoshida, G. J. Applications of patient-derived tumor xenograft models and tumor organoids. Journal of Hematology & Oncology. 13 (1), 4 (2020).
  3. Ledur, P. F., Onzi, G. R., Zong, H., Lenz, G. Culture conditions defining glioblastoma cells behavior: What is the impact for novel discoveries. Oncotarget. 8 (40), 69185-69197 (2017).
  4. Richter, M., et al. From donor to the lab: A fascinating journey of primary cell lines. Frontiers in Cell and Developmental Biology. 9, 711381 (2021).
  5. Esparza-Lopez, J., Martinez-Aguilar, J. F., Ibarra-Sanchez, M. J. Deriving primary cancer cell cultures for personalized therapy. Revista de Investigación Clínica. 71 (6), 369-380 (2019).
  6. Choi, J. R., et al. In vitro human cancer models for biomedical applications. Cancers. 14 (9), 2284 (2022).
  7. Eglen, R. M., Randle, D. H. Drug discovery goes three-dimensional: Goodbye to flat high-throughput screening. Assay and Drug Development Technologies. 13 (5), 262-265 (2015).
  8. Kodack, D. P., et al. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Reports. 21 (11), 3298-3309 (2017).
  9. Moskovits, N., et al. Palbociclib in combination with sunitinib exerts a synergistic anti-cancer effect in patient-derived xenograft models of various human cancers types. Cancer Letters. 536, 215665 (2022).
  10. Ricardo, R., Phelan, K. Counting and determining the viability of cultured cells. Journal of Visualized Experiments. (16), e752 (2008).
  11. Brajša, K., Trzun, M., Zlatar, I., Jelić, D. Three-dimensional cell cultures as a new tool in drug discovery. Periodicum Biologorum. 118 (1), 59-65 (2016).
  12. Han, S. J., Kwon, S., Kim, K. S. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell International. 21 (1), 152 (2021).
  13. van Meerloo, J., Kaspers, G. J., Cloos, J. Cell sensitivity assays: The MTT assay. Methods in Molecular Biology. 731, 237-245 (2011).
  14. Walzl, A., et al. The resazurin reduction assay can distinguish cytotoxic from cytostatic compounds in spheroid screening assays. Journal of Biomolecular Screening. 19 (7), 1047-1059 (2014).

Tags

חקר הסרטן גיליון 190 תרבית תלת מימד סרטן בדיקת MTT מודלים PDX תאי גידול ראשוניים ספרואידים בדיקת כדאיות
קביעת ספרואידים תלת מימדיים מדגימות גידול שמקורן בחולה והערכת רגישותם לתרופות
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Moskovits, N., Itzhaki, E.,More

Moskovits, N., Itzhaki, E., Tarasenko, N., Chausky, E., Bareket-Samish, A., Kaufman, A., Meerson, R., Stemmer, S. M. Establishing 3-Dimensional Spheroids from Patient-Derived Tumor Samples and Evaluating their Sensitivity to Drugs. J. Vis. Exp. (190), e64564, doi:10.3791/64564 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter