Back to chapter

13.12:

תרגום

JoVE Core
Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Biology
Translation

Languages

Share

תרגום הוא התהליך של סינתזה של חלבון מתבנית רנ”א שליחה. תהליך זה מתחיל כאשר יחידת משנה קטנה של ריבוזום, יחד עם מתיונין רנ”א נקשרים mRNAאל הקצה החמישי הסופי של ה. יחידת המשנה הקטנה מתחילה לסרוק בחמישה עד שלושה כיוונים עד שהוא פוגש קודון AUG שישרת כאתר התחלת התרגום.לאחר מכן, האנטיקודון של tRNA מתיונין יהיה זוג עם קודון AUG ויגייס את יחידת המשנה הגדולה של הריבוזום. סינתזה של החלבונים החדשים מתחילה כאשר tRNA נושאת חומצה אמינית לקודון הבא של mRNA דרך האנטיקודון שלה. פעולה זו מציבה את חומצת האמינו החדשה בסמיכות לחומצת האמינו הקודמת, אשר יוצר קשר פפטיד בין שתי חומצות האמינו.התרגום ממשיך כצעדי הריבוזום לקודון הבא ברצף. תנועה קדימה זו נקראת טרנסלוקציה וימשיך עד המפגש הריבוזומי קודון עצור. קודונים עצור הם ייחודיים בכך שאין להם tRNAs.במקום זאת, חלבונים הנקראים גורמים שחרור נקשרים לקודון עצור, אשר גורם לריבוזום לשחרר את החלבון החדש מסונתז וגורמת לריבוזומים להתנתק.

13.12:

תרגום

Overview

Translation is the process of synthesizing proteins from the genetic information carried by messenger RNA (mRNA). Following transcription, it constitutes the final step in the expression of genes. This process is carried out by ribosomes, complexes of protein and specialized RNA molecules. Ribosomes, transfer RNA (tRNA) and other proteins are involved in the production of the chain of amino acids—the polypeptide.

Translation Produces the Building Blocks of Life

Proteins are called the “building blocks” of life because they make up the vast majority of all organisms—from muscle fibers to hairs on your head to components of your immune system—and the blueprint for each and every one of those proteins is encoded by the genes found in the DNA of every cell. The central dogma in biology dictates that genetic information is converted into functional proteins by the processes of transcription and translation.

Translation Occurs Outside of the Nucleus

Eukaryotes have a membrane-bound nucleus where mRNA is transcribed from DNA. After transcription, mRNA is shuttled out of the nucleus to be translated into a chain of amino acids—a polypeptide—and eventually, a functional protein. This can take place in the cytoplasm or in the rough endoplasmic reticulum, where the polypeptides are further modified. By contrast, prokaryotes lack a nuclear compartment, so translation in prokaryotes takes place in the cytoplasm, sometimes as the mRNA is still being transcribed.

The Sequence of Codons in mRNA Determines the Polypeptide Sequence

Each codon in the mRNA corresponds to one of the 20 amino acids that a cell keeps stocked, as well as stop codons which do not code for amino acids. Another RNA molecule, transfer RNA (tRNA), is responsible for providing the correct amino acid, based on the codon sequence, to the ribosomes during translation. At one end of the tRNA molecule, enzymes called aminoacyl-tRNA synthetases covalently attach the specific amino acid to the attachment site, while the anticodon sequence located on the other end of the tRNA will ensure the correct amino acid is delivered to the ribosome. Some tRNA molecules are able to bind to more than one codon sequence, allowing for coding versatility known as the wobble effect. This is due to the fact that tRNA molecules have lower binding specificity to the third nucleotide in the mRNA codon sequence as compared to the first two nucleotides.

Some Inherited Diseases Stem from Defects in Translation

Translation is a complex process that depends on a wide array of cellular components. Mutations that impact any part of this diverse toolkit can cause disease. For example, the iron-storage disease hyperferritinemia, also known as cataract syndrome, results from mutations in the 5’ untranslated region of the mRNA, a region that is important for recruiting translation initiation proteins. These mutations cause abnormally high rates of translation of the iron protein ferritin, causing it to build up in the blood and tissues of affected patients. As a result, the lenses of the eyes turn cloudy. Other diseases are linked to mutations in the genes that encode tRNAs and the ribosomal subunits. For instance, the bone-marrow disease Diamond-Blackfan anemia stems from mutations in the RPS19 gene, a component of the small ribosomal subunit.

Suggested Reading

Scheper, G. C., van der Knaap, M. S., & Proud, C. G. (2007). Translation matters: protein synthesis defects in inherited disease. Nature Reviews Genetics, 8(9), 711. [Source]