Back to chapter

16.3:

מחזור ליטי של בקטריופאג׳ים

JoVE Core
Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Biology
Lytic Cycle of Bacteriophages

Languages

Share

סוגים מסוימים של נגיפים הנקראים בקטריופאג’ים או טורפי חיידקים, מדביקים תאים חיידקיים בלבד. בעוד פאג’ים יכולים להיבדל בצורתם ובחומר הגנטי, הייחודית ביותר במחלקה זו היא המורפולוגיה של ראש וזנב עם דנ”א דו-גדילי. כדי להתחיל את תהליך הזיהום, המכונה כמחזור החיים שלו, הפאג’מתחבר תחילה לחיידק.ליתר דיוק, חלבונים בתוך סיבי הזנב נקשרים לקולטנים ספציפיים על פני השטח. הזנב אז מתכווץ, ובכך מזריק את הדנ”א לתוך הציטופלזמה של המארח, ומתקבל קפסיד ריק. כדי להתרבות, אפשרות אחת היא להיכנס למסלול הליטי, מצב של שכפול הכרוך בהשתלטות על מנגנונים תאיים של החיידק, בהריסת דנ”א המארח, ובאילוצו לייצר רכיבים ויראליים.הדנ”א של הפאג’מוגן ומועתק, וקבוצות חלבונים נוספות מסונתזות כדי לסייע ביצירת נגיפים חדשים. במהלך שלב זה של הרכבה עצמית, הגנום הוויראלי נארז בתוך הראש. הפאג’אף מתרגם חלבונים שמפרקים את דופן התא המארח, ומאפשרים כניסה של מים.כתוצאה מההתרחבות, התא מתפרץ וליזיס זה של החיידק משחרר מאות של פאג’ים חדשים, אשר יכולים כעת למצוא ולהדביק את אוכלוסיית החיידקים הקרובה.

16.3:

מחזור ליטי של בקטריופאג׳ים

Bacteriophages, also known as phages, are specialized viruses that infect bacteria. A key characteristic of phages is their distinctive “head-tail” morphology. A phage begins the infection process (i.e., lytic cycle) by attaching to the outside of a bacterial cell. Attachment is accomplished via proteins in the phage tail that bind to specific receptor proteins on the outer surface of the bacterium. The tail injects the phage’s DNA genome into the bacterial cytoplasm. In the lytic replication cycle, the phage uses the bacterium’s cellular machinery to make proteins that are critical for the phage’s replication and dispersal. Some of these proteins cause the host cell to take in water and burst, or lyse, after phage replication is complete, releasing hundreds of phages that can infect new bacterial cells.

Phage Therapy

Since the early 20th century, researchers have recognized the potential value of lytic bacteriophages in combating bacterial infections in crops, humans, and agricultural animals. Because each type of phage can infect and lyse only specific types of bacteria, phages represent a highly specific form of anti-bacterial treatment. This quality stands in contrast to the familiar antibiotic drugs that we often take for bacterial infections, which are typically broad-spectrum treatments that kill both pathogenic and beneficial bacteria. The widespread use of broad-spectrum antibiotics has caused the evolution of bacterial resistance to whole classes of these drugs, rendering once treatable infections potentially deadly. As more pathogenic bacteria evolve resistance to antibiotics, narrow-spectrum phage therapy may become a useful alternative. Because phages are highly specific in the bacteria that they infect, the evolution of resistance to phages would also be limited to the particular strain of bacteria.

However, several obstacles must be overcome for phage therapy to become a viable alternative to antibiotics. For instance, the high specificity of phages is also a drawback, because different phages would be needed for each species of the bacterial pathogen or even strain of bacteria within a pathogenic species. It would, therefore, be difficult to produce phages for many different bacterial infections at a large scale. Furthermore, because of phage specificity, it would be necessary to either know the particular bacterial strain that is causing an infection or use a cocktail of multiple different phages in the treatment and hope that one of them matches the pathogenic bacteria. Despite these drawbacks, phage therapy remains an active area of research.

Suggested Reading

Doss, Janis, Kayla Culbertson, Delilah Hahn, Joanna Camacho, and Nazir Barekzi. “A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms.” Viruses 9, no. 3 (March 18, 2017). [Source]

Abedon, Stephen T., Pilar García, Peter Mullany, and Rustam Aminov. “Editorial: Phage Therapy: Past, Present and Future.” Frontiers in Microbiology 8 (2017). [Source]