Back to chapter

20.8:

Ciclo das Pontes Cruzadas

JoVE Core
Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Biology
Cross-bridge Cycle

Languages

Share

Um músculo contraí quando a sobreposição dos filamentos finos e grossos aumenta, fazendo com que o comprimento do sarcómero diminua. No nível molecular, a contração ocorre quando o ATP ligado à região da cabeça globular da miosina é hidrolisado em ADP, convertendo a cabeça de miosina para um estado de alta energia em que se liga à actina e cria uma ponte cruzada. A liberação de ADP faz com que a cabeça da miosina retorne a um estado de baixa energia, movendo a actina em direção ao centro do sarcómero.A vinculação de uma nova molécula de ATP para a cabeça da miosina, em seguida, a dissocia da actina. Na próxima vez que a cabeça da miosina se ligar à actina, será em uma parte que está mais perto da linha Z.Este processo de ligação é controlado por duas proteínas reguladoras, a tropomiosina e a troponina, e a concentração de cálcio, que é armazenado e liberado do retículo sarcoplasmático. A tropomiosina cobre o sítio de ligação da miosina na actina, e a troponina se liga ao cálcio quando está disponível, movendo a tropomiosina para longe do sítio de ligação da miosina em ação.Nesta conformação, uma ponte cruzada pode formar e o músculo se contrai. Este ciclo continua até que o cálcio e a ATP não estejam mais presentes na fibra muscular.

20.8:

Ciclo das Pontes Cruzadas

À medida que os músculos contraem, a sobreposição entre os filamentos finos e grossos aumenta, diminuindo o comprimento do sarcómero—a unidade contrátil do músculo—usando energia na forma de ATP. A nível molecular, este é um processo cíclico, com vários passos, que envolve a ligação e hidrólise de ATP, e o movimento de actina pela miosina.

Quando o ATP, que está preso à cabeça da miosina, é hidrolisado para ADP, a miosina passa para um estado de alta energia ligada à actina, criando uma ponte cruzada. Quando o ADP é libertado, a cabeça de miosina passa para um estado de baixa energia, movendo-se em direção ao centro do sarcómero. A ligação de uma nova molécula de ATP dissocia a miosina da actina. Quando este ATP estiver hidrolisado, a cabeça de miosina irá ligar-se à actina, desta vez em uma região de actina mais perto do fim do sarcómero. As proteínas regulatórias troponina e tropomiosina, juntamente com cálcio, trabalham juntas para controlar a interação mosina-actina. Quando a troponina se liga ao cálcio, a tropomiosina é afastada do local de ligação de miosina na actina, permitindo que a mosina e a actina interajam e a contração muscular ocorra.

Cálcio

Como regulador da contração muscular, a concentração de cálcio é muito controlada em fibras musculares. As fibras musculares estão em contacto próximo com os neurónios motores. Potenciais de ação em neurónios motores causam a libertação do neurotransmissor acetilcolina nas proximidades das fibras musculares. Isso gera um potencial de ação (despolarização) na célula muscular, que é transportado ao longo da membrana plasmática e através de invaginações da membrana plasmática chamada transversal, ou túbulos-T.

Os túbulos-T encontram-se profundamente no músculo e estão adjacentes a organelos especializados de retículo endoplasmático chamados retículo sarcoplasmático, ou SR. O cálcio sequestrado dentro do SR é libertado quando canais iónicos dependentes de voltagem (canais iónicos que abrem e fecham com base em cargas locais) abrem em resposta à despolarização, permitindo que iões de cálcio entrem no citoplasma, e que os músculos contraiam.

Quando a sinalização a partir de neurónios motores pára, o relaxamento do músculo começa conforme o cálcio é bombeado de volta para o SR, diminuindo os níveis citoplasmáticos de cálcio e repondo o stock de cálcio no SR em preparação para a contração seguinte.

Degeneração Muscular

Músculos saudáveis podem contrair, mas músculos doentes muitas vezes perdem essa capacidade. Doenças como a miastenia grave impedem a estimulação de neurónios motores no músculo, o que resulta em atrofia muscular e diminuição da massa muscular. A esclerose lateral amiotrófica (ELA ou doença de Lou Gehrig) faz com que os neurónios motores se degenerem, o que também leva à degeneração e atrofia musculares.

Suggested Reading

Guellich, Aziz, Elisa Negroni, Valérie Decostre, Alexandre Demoule, and Catherine Coirault. “Altered Cross-Bridge Properties in Skeletal Muscle Dystrophies.” Frontiers in Physiology 5 (October 14, 2014). [Source]

Debold, Edward P. “Recent Insights into Muscle Fatigue at the Cross-Bridge Level.” Frontiers in Physiology 3 (June 1, 2012). [Source]

Rall, Jack A. “What Makes Skeletal Muscle Striated? Discoveries in the Endosarcomeric and Exosarcomeric Cytoskeleton.” Advances in Physiology Education 42, no. 4 (November 15, 2018): 672–84. [Source]