Back to chapter

31.3:

ברירה תלויית-תדירות

JoVE Core
Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Biology
Frequency-dependent Selection

Languages

Share

הברירה הטבעית יכולה להיות מושפעת גם על-ידי התדירות של פנוטיפים שונים בתוך האוכלוסייה, תהליך המכונה ברירה תלוית תדירות. בברירה תלוית תדירות חיובית, ככל שפנוטיפ הופך לנפוץ יותר, כך ה‫כשירות של פנוטיפ זה עולה. לדוגמה, יש הרבה צורות צבע רעילות, פרפר מ‫מין הליקוניוס.כאשר צורה אחת נפוצה, ציפורים כבר למדו שהיא רעילה וימנעו ממנה. עם זאת, כאשר הציפורים נתקלות בצורה נדירה ולומדות שהיא גם רעילה, כשירות ותדירות של צורה זו יגדלו גם. מצד שני, בברירה תלוית תדירות השלילית.כשירות הפנוטיפ פוחתת ככל שהוא הופך לנפוץ יותר. לדוגמה, כדי להמנע מטריפה, פרפרי ה-Viceroy מחקים את הצבע והדפוס של פרפרי המונרך הרעילים. כאשר החיקויים נדירים, ציפורים ימנעו מהם, שכן הם כנראה נתקלו יותר בפרפרי המונרך הרעילים.עם זאת, כאשר חיקויים הם נפוצים, מפגשים בין הציפורים ופרפרים נוטים להיות חיוביים, Viceroy-מה שמפחית את כשירות ה.

31.3:

ברירה תלויית-תדירות

When the fitness of a trait is influenced by how common it is (i.e., its frequency) relative to different traits within a population, this is referred to as frequency-dependent selection. Frequency-dependent selection may occur between species or within a single species. This type of selection can either be positive—with more common phenotypes having higher fitness—or negative, with rarer phenotypes conferring increased fitness.

Positive Frequency-Dependent Selection

In positive frequency-dependent selection, common phenotypes have a fitness advantage. This scenario is often seen in interactions where mimicry is involved. In the Neotropical region of Central America, the butterfly species Heliconius cydno and Heliconius sapho are involved in a Müllerian mimicry partnership. Both butterflies are black and white, a common aposematic signal in the animal kingdom that warns of toxicity, venom, bad taste, or other predator deterrents.

Interestingly, H. cydno can hybridize with a closely related sister species, H. melpomene, and produce offspring. H. melpomene is predominantly black and red. The resulting mixed white-red-black hybrid offspring are significantly less fit. In addition to the female hybrids being sterile, predators do not recognize the colors as deterrent warnings, and butterflies of either parent species do not recognize the hybrids as potential mates. Therefore, the most common phenotype—black and white—is selected for. However, the more frequent the white-red-black hybrids become, the more relatively fit the phenotype becomes because predators are more likely to have learned about the warning pattern through a previous encounter with another hybrid individual.

Negative Frequency-Dependent Selection

Negative frequency-dependent selection is a form of selection in which common phenotypes are selected against. One type of negative frequency-dependent selection occurs when rare phenotypes of a prey species confer higher fitness because predators do not recognize the organisms as prey. This is known as apostatic selection.

A classic example of apostatic selection is found in the grove snail and one of its predators, the thrush. The grove snail displays polymorphic shell patterning, but the predatory thrushes tend to focus on one or two common forms of shell patterning when searching for prey. These common phenotypes, therefore, experience stronger negative selection pressure.

Another example of negative frequency-dependent selection is found in plant self-incompatibility systems. In angiosperms, homomorphic self-incompatibility is crucial to prevent self-fertilization that typically involves genetic mechanisms that prevent pollen germination or tube growth if the pollen and pistil express identical alleles. This is controlled by a multiallelic genomic region called the S-locus. Because of this, plants expressing common forms of the S-locus will often encounter false “selves”—where a potential reproductive event, and therefore gene flow, is blocked due to the self-incompatibility genes. This means that rarer forms of the S-locus are under positive selection, while common forms are selected against.

Suggested Reading

Naisbit, R. E., C. D. Jiggins, and J. Mallet. “Disruptive Sexual Selection against Hybrids Contributes to Speciation between Heliconius Cydno and Heliconius Melpomene.” Proceedings of the Royal Society B: Biological Sciences 268, no. 1478 (September 7, 2001): 1849–54. [Source]

Brisson, Dustin. “Negative Frequency-Dependent Selection Is Frequently Confounding.” Frontiers in Ecology and Evolution 6 (2018). [Source]