Back to chapter

6.1:

Energiegrundlagen

JoVE Core
Chemistry
This content is Free Access.
JoVE Core Chemistry
Energy Basics

Languages

Share

Warum reagiert Natrium-Metall mit Wasser um Wasserstoffgas herzustellen, aber Natriumchlorid löst sich einfach auf? Dies lässt sich durch das Studium der Beziehung zwischen Chemie und Energie, genannt Thermochemie”erklären. Alle Formen der Materie sind mit Energie, die als Wärme oder Arbeit gemessen werden kann, verbunden.Die beiden Hauptenergiearten sind potentielle und kinetische Energie. Die potentielle Energie beschreibt die Lagekraft, die auf ein Objekt einwirkt. Ein Felsen auf dem Gipfel eines Berges hat mehr potentielle Energie als ein Felsen am Boden, weil der Felsen auf dem Gipfel weiter vom Massenzentrum der Erde entfernt ist.Kinetische Energie ist die Energie eines sich bewegenden Objekts. Wenn ein Stein vom Hügel gestoßen wird, verliert er potentielle Energie, aber er gewinnt kinetische Energie, wenn er sich bewegt. Dies gilt auch für die Atome oder Moleküle, die ein Objekt ausmachen.Ein ruhendes Objekt besitzt immer noch kinetische Energie, weil seine Atome schwingen können. Diese Form der kinetischen Energie wird thermische Energie genannt. Ein Objekt hat eine höhere kinetische Energie und folglich höhere thermische Energie, wenn sich die Atome kräftiger bewegen.Dieses Objekt wird als heiß empfunden. Moleküle haben auch potentielle Energie, genannt chemische Energie, die mit der relativen Position von Elektronen und Kernen verbunden ist. Während einer Reaktion wird chemische Energie in andere Energieformen, wie zum Beispiel Licht, umgewandelt, oder es wird Energie freigesetzt, zum Beispiel in Form von Wärme.Die Menge der umgewandelten Energie hängt von der Molekularstruktur der Reaktante ab. In einer Gaslampe verbrennt Acetylen zu Kohlendioxid und Wasser, was eine große Menge an Energie als Licht freisetzt. Auf der anderen Seite, setzt die Zugabe von Natriumhydroxid zu Salzsäure eine kleinere Menge Energie in Form von Wärme frei.Um Energieveränderungen zu untersuchen, hilft es, das Universum in ein System”das den beobachteten Prozess enthält, und die Umgebung”die alles andere ist, zu trennen. Das System kann offen sein, was bedeutet, dass sowohl Energie als auch Masse zwischen dem System und der Umgebung ausgetauscht werden. Das System kann geschlossen werden, wobei nur Energie ausgetauscht wird, oder das System kann isoliert werden, wobei weder Masse noch Energie ausgetauscht werden.

6.1:

Energiegrundlagen

Chemical reactions, such as those that occur when you light a match, involve changes in energy as well as matter.

Chemical changes and their accompanying changes in energy are important parts of everyday life. The macronutrients in food undergo metabolic reactions that provide the energy to keep bodies functioning. A variety of fuels (gasoline, natural gas, coal) is burned to produce energy for transportation, heating, and the generation of electricity. Industrial chemical reactions use enormous amounts of energy to produce raw materials (such as iron and aluminum). Energy is then used to manufacture those raw materials into useful products, such as cars, skyscrapers, and bridges.

Over 90% of the energy used by humans comes originally from the sun. Every day, the sun provides the earth with almost 10,000 times the amount of energy necessary to meet all of the world’s energy needs for that day. The challenge remains to find ways to convert and store incoming solar energy so that it can be used in reactions or chemical processes that are both convenient and nonpolluting. Plants and many bacteria capture solar energy through photosynthesis. Humans release the energy stored in plants when burning wood, coal, petroleum, or other plant products such as ethanol. They also use this energy to fuel their bodies by eating food that comes directly from plants.

Thermochemistry

The basic ideas of an important area of science concerned with the amount of heat absorbed or released during chemical and physical changes — is called thermochemistry. The concepts are widely used in almost all scientific and technical fields. Food scientists use thermochemistry to determine the energy content of foods. Biologists study the energetics of living organisms, such as the metabolic combustion of sugar into carbon dioxide and water. The oil, gas, and transportation industries, renewable energy providers, and many others endeavor to find better methods to produce energy for commercial and personal needs. Engineers strive to improve energy efficiency, find better ways to heat and cool homes, refrigerate food and drinks, and meet the energy and cooling needs of computers and electronics, among other applications. Understanding thermochemical principles is essential for chemists, physicists, biologists, geologists, every type of engineer, and just about anyone who studies or does any kind of science.

Energy

Energy can be defined as the capacity to supply heat or do work. One type of work (w) is the process of causing matter to move against an opposing force. For example, when inflating a bicycle tire — matter is moved (the air in the pump) against the opposing force of the air already in the tire.

Like matter, energy comes in different types. One scheme classifies energy into two types: potential energy, the energy an object has because of its relative position, composition, or condition, and kinetic energy, the energy that an object possesses because of its motion.

Water at the top of a waterfall or dam has potential energy because of its position; when it flows downward through generators, it has kinetic energy that can be used to do work and produce electricity in a hydroelectric plant. A battery has potential energy because the chemicals within it can produce electricity that can do work.

This text is adapted from OpenStax Chemistry 2e, Section 5.1: Energy Basics.