Back to chapter

6.1:

יסודות האנרגיה

JoVE Core
Chemistry
This content is Free Access.
JoVE Core Chemistry
Energy Basics

Languages

Share

מדוע נתרן בצורתו המתכתית מגיב עם מים ויוצר גז מימן, בעוד שנתרן כלורי פשוט נמס? ניתן להסביר תופעה זו באמצעות בחינת הקשר בין כימיה לאנרגיה, הקרוי תרמוכימיה”כל צורות החומר קשורות באנרגיה, הניתנת למדידה בצורת חום או עבודה. שני סוגי האנרגיה המרכזיים הם אנרגיה פוטנציאלית וקינטית.אנרגיה פוטנציאלית מתארת את הכוחות הקשורים בהפרשי מיקום הפועלים על עצם. לסלע בראש גבעה יש יותר אנרגיה פוטנציאלית מאשר לסלע הנמצא למרגלות הגבעה, משום שהוא רחוק יותר ממרכז המסה של כדור הארץ. אנרגיה קינטית היא האנרגיה של עצם נע.אם סלע נדחף מראש גבעה, הוא מפסיד אנרגיה פוטנציאלית אך צובר אנרגיה קינטית בתנועתו. כך קורה גם לאטומים ולמולקולות המרכיבים את העצם. לעצם נייח עדיין יש אנרגיה קינטית משום שהאטומים מהם הוא עשוי יכולים לרטוט.סוג כזה של אנרגיה קינטית נקרא אנרגיה תרמית. לעצם יש אנרגיה קינטית רבה יותר ובעקבות זאת גם אנרגיה תרמית רבה יותר כשהאטומים שלו זזים באופן נמרץ יותר. עצם זה נחשב כחם.גם למולקולות יש אנרגיה פוטנציאלית הקרויה אנרגיה כימית, הקשורה במרחק היחסי של האלקטרונים מהגרעין. במהלך תגובה, אנרגיה כימית מומרת לצורות אחרות של אנרגיה, כמו אור, או פליטה אחרת של אנרגיה, כמו חום. כמות האנרגיה המועברת תלויה במבנה המולקולרי של המגיבים.במנורת גז, אצטילן בוער והופך לפחמן דו חמצני ומים, ומשחרר כמות גדולה של אנרגיה כאור. לעומת זאת, אם נוסיף נתרן הידרוקסיד לחומצת מימן כלורי תשתחרר כמות קטנה יותר של אנרגיה כחום. כדי לחקור שינויי אנרגיה, יקל עלינו לחלק את היקום ל”מערכת”המכילה את התהליך הנצפה ול”סביבה”בה יש את כל השאר.המערכת יכולה להיות פתוחה, במובן שגם אנרגיה וגם מסה יכולות לנוע בין המערכת והסביבה. והיא יכולה להיות סגורה, כך שתהיה רק המרת אנרגיה בינה לבין הסביבה. המערכת עשויה גם להיות מבודדת, ובה גם חומר וגם אנרגיה לא מועברים.

6.1:

יסודות האנרגיה

Chemical reactions, such as those that occur when you light a match, involve changes in energy as well as matter.

Chemical changes and their accompanying changes in energy are important parts of everyday life. The macronutrients in food undergo metabolic reactions that provide the energy to keep bodies functioning. A variety of fuels (gasoline, natural gas, coal) is burned to produce energy for transportation, heating, and the generation of electricity. Industrial chemical reactions use enormous amounts of energy to produce raw materials (such as iron and aluminum). Energy is then used to manufacture those raw materials into useful products, such as cars, skyscrapers, and bridges.

Over 90% of the energy used by humans comes originally from the sun. Every day, the sun provides the earth with almost 10,000 times the amount of energy necessary to meet all of the world’s energy needs for that day. The challenge remains to find ways to convert and store incoming solar energy so that it can be used in reactions or chemical processes that are both convenient and nonpolluting. Plants and many bacteria capture solar energy through photosynthesis. Humans release the energy stored in plants when burning wood, coal, petroleum, or other plant products such as ethanol. They also use this energy to fuel their bodies by eating food that comes directly from plants.

Thermochemistry

The basic ideas of an important area of science concerned with the amount of heat absorbed or released during chemical and physical changes — is called thermochemistry. The concepts are widely used in almost all scientific and technical fields. Food scientists use thermochemistry to determine the energy content of foods. Biologists study the energetics of living organisms, such as the metabolic combustion of sugar into carbon dioxide and water. The oil, gas, and transportation industries, renewable energy providers, and many others endeavor to find better methods to produce energy for commercial and personal needs. Engineers strive to improve energy efficiency, find better ways to heat and cool homes, refrigerate food and drinks, and meet the energy and cooling needs of computers and electronics, among other applications. Understanding thermochemical principles is essential for chemists, physicists, biologists, geologists, every type of engineer, and just about anyone who studies or does any kind of science.

Energy

Energy can be defined as the capacity to supply heat or do work. One type of work (w) is the process of causing matter to move against an opposing force. For example, when inflating a bicycle tire — matter is moved (the air in the pump) against the opposing force of the air already in the tire.

Like matter, energy comes in different types. One scheme classifies energy into two types: potential energy, the energy an object has because of its relative position, composition, or condition, and kinetic energy, the energy that an object possesses because of its motion.

Water at the top of a waterfall or dam has potential energy because of its position; when it flows downward through generators, it has kinetic energy that can be used to do work and produce electricity in a hydroelectric plant. A battery has potential energy because the chemicals within it can produce electricity that can do work.

This text is adapted from OpenStax Chemistry 2e, Section 5.1: Energy Basics.