Back to chapter

9.5:

פירוק רדיואקטיבי ותיארוך רדיומטרי

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Radioactive Decay and Radiometric Dating

Languages

Share

רדיואקטיביות היא ההתמרה הספונטנית של נוקליד בלתי יציב, המובילה לפליטת קרינה. זהו תהליך אקראי, לכן לכל הגרעינים בדוגמה יש אותה היתכנות להתפורר. מספר ההתפרקויות ליחידת זמן נקרא הפעילות, A, העומדת ביחס ישר ל-N, מספר הגרעינים הרדיואקטיביים.למדה, קבוע ההתפוררות, הוא ההיתכנות הממוצעת של התפוררות לגרעין ביחידת זמן נתונה. פעילות נמדדת באמצעות גלאי קרינה ובקוורל, שהוא התפרקות אחת לשנייה, הוא יחידת SI שלה. הקירי, שהוא 37 מיליארד בקוורל, עדיין משמש ליישומים בקני מידה נרחבים.לרדיונוקלידים שונים יש קצבי התפוררות שונים. מאחר והפעילות עומדת ביחס ישר למספר האטומים הרדיואקטיביים, היא קטנה עם הזמן ככל שכמות הגרעינים הלא יציבים בדוגמה קטנה. השינוי בפעילות על פני זמן מחושב באמצעות משוואה אקספוננציאלית, שבה A הוא פעילות בזמן מסוים, t, A₀ הוא הפעילות ההתחלתית, למדה היא קבוע ההתפוררות, ו-t הוא הזמן שחלף מאז שהפעילות הייתה A₀ מחצית החיים של רדיונוקליד, t_1/2, היא הזמן הממוצע הנחוץ לפעילות של דוגמה לרדת למחצית מערך זה.לכן ניתן לארגן מחדש את המשוואה כדי לחשב את מחצית החיים מתוך קבוע ההתפוררות, שעומד ביחס הפוך אליה. מחצית החיים היא תכונה מהותית של רדיונוקליד, והיא נעה בשונות רבה מגרעין לגרעין:לרדון-220 יש מחצית חיים של דקה, בעוד שלתוריום-232 יש מחצית חיים של 14 מיליארד שנה. נתוני מחצית החיים הקבועה של רדיונוקלידים רלוונטיים לטכניקות כגון תארוך רדיואקטיבי, המעריך את גילם של חפצים לפי כמות הרדיונוקלידים המתרחשת באופן טבעי.היחס של פחמן-14 בלתי יציב לפחמן-12 יציב בצמחים ובבעלי חיים מתאים ליחס באטמוספרה. היחס נשמר באמצעות חידוש פחמן מאוויר וממזון. לאחר מותם, יחס פחמן-14 לפחמן-12 מתחיל לרדת ככל שפחמן-14 הרדיואקטיבי מתפורר באמצעות פליטת חלקיקי ביתא.אם למין יש 25 אחוז יותר פחמן-14 מכפי שהיה לו בחייו, זה מעיד על כך ששתי מחציות חיים חלפו. האובייקט חייב להיות בן 11, 460 שנה.

9.5:

פירוק רדיואקטיבי ותיארוך רדיומטרי

Radioactivity is a spontaneous disintegration of an unstable nuclide and is a random process, as all the nuclei in the sample do not decay simultaneously. The number of disintegrations per unit time is called the activity (A), which is directly proportional to the number of nuclei in the sample. The decay constant (λ) is an average probability of decay per nucleus in unit time.

Eq1

The SI unit for activity is the becquerel, which is one disintegration per second. Another unit of activity is the curie, which is equal to 37 billion becquerels. Plotting activity vs time for different radionuclides indicates different decay rates. The time required for the activity to fall from any value to half of that value is one half-life, indicated as t1/2.

As the activity is proportional to the number of radioactive atoms, it decreases with time as the amount of sample diminishes. Mathematically, the activity of a radionuclide is indicated by an exponential equation:

Eq2

Thus, when activity is reduced to half, rearranging the equation provides a way to calculate the half-life, which is inversely proportional to the decay constant.

Eq3

A half-life is an intrinsic property of a radionuclide, and any single atom of an unstable nuclide has the same half-life regardless of whether it is completely alone in a vacuum or in a sample with many other atoms of that nuclide. The half-lives of radionuclides vary widely: radon-220 has a half-life of 1 minute: one million nuclei decay down to half a million in a minute and further decay to one fourth of a million in another minute. However, thorium-232 has a half-life of 14 billion years.

Several radioisotopes have half-lives and other properties that make them useful for purposes of “dating” the temporal origin of objects such as archaeological artifacts, formerly living organisms, or geological formations.

Carbon-14, a radionuclide with a half-life of 5730 years, provides a method for dating objects that were a part of a living organism. This method of radiometric dating is accurate for dating carbon-containing substances that are up to about 30,000 years old and can provide reasonably accurate dates up to a maximum of about 50,000 years old.

Naturally occurring carbon consists of three isotopes: carbon-12, which constitutes about 99% of the carbon on earth; carbon-13, about 1% of the total; and trace amounts of carbon-14. Carbon-14 forms in the upper atmosphere by the reaction of nitrogen atoms with neutrons from cosmic rays in space.

All isotopes of carbon react with oxygen to produce CO2 molecules. Thus, living plants and animals have a ratio of carbon-14 and carbon-12 identical to the atmosphere. But when the living plant or animal dies, replenishment of carbon stops, and the carbon-14 to 12 ratio starts diminishing as the radioactive carbon-14 continuously decays. For example, if the carbon-14 to carbon-12 ratio in a wooden object found in an archaeological dig is half what it is in a living tree, this suggests that the object was made from wood cut down 5730 years ago. Highly accurate determinations of carbon-14 to carbon-12 ratios can be obtained from very small samples (as little as a milligram) using a mass spectrometer.

Radioactive dating can also use other radioactive nuclides with longer half-lives to date older events. For example, uranium-238, which decays in a series of steps into lead-206, can be used for establishing the age of rocks (and the approximate age of the oldest rocks on earth). Since uranium-238 has a half-life of 4.5 billion years, it takes that amount of time for half of the original uranium-238 to decay into lead-206. In a sample of rock that does not contain appreciable amounts of lead-208, the most abundant isotope of lead, we can assume that lead was not present when the rock was formed. Therefore, by measuring and analyzing the ratio of U-238:Pb-206, we can determine the age of the rock. This assumes that all of the lead-206 present came from the decay of uranium-238. If there is additional lead-206 present, which is indicated by the presence of other lead isotopes in the sample, it is necessary to make an adjustment. Potassium–argon dating uses a similar method. Potassium-40 decays by positron emission and electron capture to form argon-40 with a half-life of 1.25 billion years. If a rock sample is crushed and the amount of argon-40 gas that escapes is measured, determination of the Ar-40:K-40 ratio yields the age of the rock.

This text is adapted from Openstax, Chemistry 2e, Section 21.3: Radioactive Decay.