Back to chapter

6.9:

Mismatch Repair

JoVE Core
Molecular Biology
This content is Free Access.
JoVE Core Molecular Biology
Mismatch Repair

Languages

Share

Following proofreading, errors in DNA replication like pairing adenine with cytosine can persist and maybe fixed through a mechanism called mismatch repair.

In this process, mispaired bases are identified due to their abnormal structure by a mismatch repair protein, such as MutS. Other mismatch repair proteins like MutL then identify the new strand so that the strand with the error is repaired while the template strand remains unchanged.

How the new strand is identified depends on the organism. In E. coli specific DNA sequences are methylated, have a methyl group added, sometime after DNA has been synthesized. E. coli mismatch repair proteins detect the sequences that haven't been methylated yet, identifying the new strand.

In Eukaryotes the new strand is more likely to have nicks, small breaks than the template. Eukaryotic mismatch repair proteins identify the nicked strand and target it for repair.

Once the new strand is identified, the region with the air is cut out by Exonucleuase enzymes, which remove nucleotides.  Finally, DNA Polymerase adds in the correct nucleotides and DNA Ligase seals the gaps at the edges, repairing the error.

6.9:

Mismatch Repair

Overview

Organisms are capable of detecting and fixing nucleotide mismatches that occur during DNA replication. This sophisticated process requires identifying the new strand and replacing the erroneous bases with correct nucleotides. Mismatch repair is coordinated by many proteins in both prokaryotes and eukaryotes.

The Mutator Protein Family Plays a Key Role in DNA Mismatch Repair

The human genome has more than 3 billion base pairs of DNA per cell. Prior to cell division, that vast amount of genetic information needs to be replicated. Despite the proofreading ability of the DNA polymerase, a copying error occurs approximately every 1 million base pairs. One type of error is the mismatch of nucleotides, for example, the pairing of A with G or T with C. Such mismatches are detected and repaired by the Mutator protein family. These proteins were first described in the bacteria Escherichia coli (E. coli), but homologs appear throughout prokaryotes and eukaryotes.

Mutator S (MutS) initiates the mismatch repair (MMR) by identifying and binding to the mismatch. Subsequently, MutL identifies which strand is the new copy. Only the new strand requires fixing while the template strand needs to remain intact. How can the molecular machinery identify the newly synthesized strand of DNA?

Newly Synthesized Strands of DNA Differ from Their Template Strand

In many organisms, cytosine and adenine bases of the new strand receive a methyl group some time after replication. Therefore, Mut proteins identify new strands by recognizing sequences which have not yet been methylated. Additionally, the newly synthesized strand in eukaryotes is more likely to have small breaks, also called DNA nicks. The MMR proteins can thus identify the nicked strand and target it for repair.

After identification of the new strand, nuclease enzymes cut the affected region and excise the incorrect nucleotides. Next, DNA polymerase fills in the correct nucleotides and DNA ligase seals the sugar-phosphate backbone of the DNA, thereby completing the mismatch repair process.

Defects in the Mismatch Repair Mechanism Can Cause Cancer

The human homolog of MutS is called Mutator S homolog 2 (MSH2). If MSH2 function is compromised, point mutations and frameshift mutations throughout the genome are not properly repaired. In consequence, humans carrying a single copy of such a compromised MSH2 have a higher likelihood of developing cancer.

Unrepaired Mutations Fuel Adaptation

Would it be best if MMR never missed a mismatch? Even low mutation rates can cause a problem for an organism. However, mutations also contribute to genetic variation in a population. For instance, a permissive mismatch repair system in a bacterium can, by chance, lead to the mutation of a gene that confers antibiotic resistance, thereby increasing the chances of bacterial survival and reproduction when exposed to antibiotics. This is great news for the bacterial population, but bad news for humans that rely on antibiotics to combat infectious diseases.

In fact, Staphylococcus aureus strains increasingly gain multidrug-resistance, meaning that few or no antibiotics can prevent the spread of this bacterium in a patient. Infections with multidrug-resistant bacteria are associated with a high mortality rate in humans. The widespread usage of antibiotics in livestock production and inappropriately shortened administration of antibiotics contribute to the emergence of multidrug-resistant bacteria.

Suggested Reading

Li, Guo-Min. “Mechanisms and Functions of DNA Mismatch Repair.” Cell Research 18, no. 1: 85–98. [Source]

Centers for Disease Control and Prevention. “The Biggest Antibiotic-Resistant Threats in the U.S.” CDC.gov. [Source]